
Washington Journal of Law, Technology & Arts Washington Journal of Law, Technology & Arts

Volume 7 Issue 3 Article 5

1-1-2012

Loaded Question: Examining Loadable Kernel Modules under the Loaded Question: Examining Loadable Kernel Modules under the

General Public License v2 General Public License v2

Curt Blake

Joseph Probst

Follow this and additional works at: https://digitalcommons.law.uw.edu/wjlta

 Part of the Intellectual Property Law Commons

Recommended Citation Recommended Citation
Curt Blake & Joseph Probst, Loaded Question: Examining Loadable Kernel Modules under the General
Public License v2, 7 WASH. J. L. TECH. & ARTS 265 (2012).
Available at: https://digitalcommons.law.uw.edu/wjlta/vol7/iss3/5

This Article is brought to you for free and open access by the Law Reviews and Journals at UW Law Digital
Commons. It has been accepted for inclusion in Washington Journal of Law, Technology & Arts by an authorized
editor of UW Law Digital Commons. For more information, please contact lawref@uw.edu.

https://digitalcommons.law.uw.edu/wjlta
https://digitalcommons.law.uw.edu/wjlta/vol7
https://digitalcommons.law.uw.edu/wjlta/vol7/iss3
https://digitalcommons.law.uw.edu/wjlta/vol7/iss3/5
https://digitalcommons.law.uw.edu/wjlta?utm_source=digitalcommons.law.uw.edu%2Fwjlta%2Fvol7%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=digitalcommons.law.uw.edu%2Fwjlta%2Fvol7%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.law.uw.edu/wjlta/vol7/iss3/5?utm_source=digitalcommons.law.uw.edu%2Fwjlta%2Fvol7%2Fiss3%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lawref@uw.edu

WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS
VOLUME 7, ISSUE 3 WINTER 2012

LOADED QUESTION: EXAMINING LOADABLE KERNEL
MODULES UNDER THE GENERAL PUBLIC LICENSE V2

Curt Blake and Joseph Probst*

© Curt Blake and Joseph Probst

http://digital.law.washington.edu/dspace-law/handle/1773.1/1115
Cite as: 7 Wash J.L. Tech. & Arts 265 (2012)

ABSTRACT

This Article examines the intersection of Linux loadable

kernel modules and the license under which Linux is
distributed, the General Public License (GPL) Version 2.
Section I of this Article discusses ambiguous terms contained
within the GPL and various interpretations of these
ambiguities. Next, Section II analyzes the changing scope of
legal protection for computer software, particularly as it
pertains to derivative works and as applied to loadable kernel
modules. Section III highlights provisions contained within
the GPL that may attempt to reach beyond a traditional
works analysis and examines these provisions in light of
recent developments at the intersection of contract law and
intellectual property licensing.

* Curt Blake, University of Washington School of Law, Class of 1983. Thanks

to Joseph Probst for collaborating with me on this paper, to Robert Gomulkiewicz
for helping get a fellow old guy published, and to my wife Kelli and my children
Gavin and Anna for keeping things fun.

 Joseph Probst, University of Washington School of Law, Class of 2012.
Thank you to Curt Blake for the collaborative efforts leading to this paper, to
Professor Robert Gomulkiewicz for providing me with the inspiration to further
analyze the legal protection of computer software, and to my family for their
enduring love and support.

266 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

TABLE OF CONTENTS

Introduction .. 267
I. Obligations Under the GPL .. 269
II. Applicability of the GPL to Loadable Kernel Modules under a

Derivative Works Analysis ... 272
A. The Evolution of the Derivative Works Test Applied to

Software .. 272
B. Applicability of the Modern Derivative Works Test to

Loadable Kernel Modules .. 276
III. Applicability of the GPL Beyond a Derivative Works

Analysis ... 279
A. Alternative Interpretations of the GPL 279
B. Recent Decisions on the Intersection of Copyright Law and

Contract Law ... 282
C. General Public License or General Public Contract? 285
D. Alternative Interpretations of the GPL Applied in Light of

MDY ... 287
1. Distribution of a Loadable Kernel Module Standing

Alone ... 287
2. Distribution of a Loadable Kernel Module in

Conjunction with an Unmodified Linux Kernel 289
3. Distribution of a Loadable Kernel Module in

Conjunction with a Modified Linux Kernel 290
E. MDY’s Effect on Availability of Remedies for Non-

Compliance with the GPL .. 291
Conclusion .. 293

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 267

INTRODUCTION

As manufacturers increasingly rely on embedded devices1 to
incorporate greater levels of intelligence into embedded systems,2
demand has grown for the software required to operate these
embedded devices. Embedded devices are used in common products
like cellular phones, digital cameras, automobiles, and medical
instruments. Demand for inexpensive, small operating systems to run
these devices has grown as the price of memory and microprocessors
has fallen, and the desire for “smart” functions in a variety of devices
has risen. The Linux operating system caters to this demand, boasting
a smaller footprint than Windows and, due to its open source
heritage, a very attractive price tag. The increasing popularity of
Linux has generated a need for software that facilitates interaction
between the Linux operating system kernel and the specific hardware
of the embedded device. Often, the solution takes the form of
loadable kernel modules, such as device drivers, which communicate
between a piece of hardware and the underlying Linux kernel.3

1 See, e.g., Embedded System, NETRINO: EMBEDDED SYSTEMS GLOSSARY,

http://www.netrino.com/Embedded-Systems/Glossary-E#embedded_system (last
visited January 17, 2012). An embedded system is a computer system designed to
do one or a few dedicated and/or specific functions, often with real-time computing
constraints. It is embedded as part of a complete device, which often includes
hardware and mechanical parts. By contrast, a general-purpose computer, such as a
personal computer (PC), is designed to be flexible and to meet a wide range of end-
user needs. Embedded systems control many devices in common use today.

2 See, e.g., id. Embedded systems span all aspects of modern life and there are
many examples of their use. Telecommunications systems employ numerous
embedded systems from telephone switches for the network to mobile phones at the
end-user. Computer networking uses dedicated routers and network bridges to route
data. Consumer electronics include personal digital assistants (PDAs), mp3 players,
mobile phones, videogame consoles, digital cameras, DVD players, GPS receivers,
and printers. Many household appliances, such as microwave ovens, washing
machines and dishwashers, are including embedded systems to provide flexibility,
efficiency and features. Advanced HVAC systems use networked thermostats to
more accurately and efficiently control temperature that can change by time of day
and season. Home automation uses wired- and wireless-networking that can be used
to control lights, climate, security, audio/visual, surveillance, etc., all of which use
embedded devices for sensing and controlling.

3 ALESSANDRO RUBINI & JONATHAN CORBERT, LINUX DEVICE DRIVERS (2d
ed. 2001), available at http://www.xml.com/ldd/chapter/book/index.html.

268 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

Unfortunately for many developers, the legal consequences of
linking to Linux kernels are unsettled. Uncertainty in this area exerts
a chilling effect on the development of embedded devices.
Developers who have created proven functions for embedded devices
running on non-Linux operating systems want to port those functions
to embedded devices running on the Linux operating system. At the
same time, manufacturers of embedded devices want to use their
trusted software partners as they develop their next generation of
products in a Linux-centric world. Uncertainty regarding the legal
consequences of linking proprietary software to a device running the
Linux kernel makes it difficult for developers of proprietary software
and embedded devices to reach agreement.

The reason for this uncertainty is the General Public License
(GPL),4 the license to which those using, modifying, or distributing
Linux are bound.5 Several of the key terms used throughout the GPL
are poorly defined or used inconsistently.6 When the ambiguity in
these terms is combined with the evolving scope of protection
afforded to computer programs by judicial interpretations of the
Copyright Act, module developers are unable to properly ascertain
the extent of their rights and restrictions.7

This Article first analyzes the special case of loadable kernel
modules under a narrow interpretation of Section 2 of the GPL, under
which the GPL’s “copyleft” requirements only apply to works which
would be derivative works under the Copyright Act. Next, the Article
examines alternate interpretations of Section 2(b) and other
provisions contained throughout the GPL that may attempt to extend
the copyleft restrictions beyond the scope of a traditional derivative
works analysis. Finally, the Article considers these provisions in light
of recent Ninth Circuit cases examining the intersection of contract
law and intellectual property licensing. The Article concludes that

4 All references to the GPL are to GPL version 2, because Linux is licensed

under this version, and is therefore the most popular version of the license.
5 Sapna Kumar, Enforcing the GNU GPL, 2006 U. ILL. J.L. TECH. & POL’Y 1,

10 (2006).
6 See generally Robert W. Gomulkiewicz, De-Bugging Open Source Software

Licensing, 64 U. PITT. L. REV. 75, 83-92 (2002).
7 See, e.g., Jeremy Andrews, Linux: The GPL and Binary Modules, KERNEL

TRAP, (Dec. 5, 2003, 7:14 AM), http://kerneltrap.org/node/1735.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 269

under recent precedent, software modules linked to the Linux kernel
are freely licensable because there is no remedy for a licensee’s
failure to follow the GPL’s terms.

I. OBLIGATIONS UNDER THE GPL

The GPL is commonly known as a “strong copyleft” license—
meaning that any derivative work created from a GPL-licensed code,
no matter how insignificant the contribution, must also be licensed
under the same terms of the GPL license.8

Under a “copyleft” license, “downstream licensees, no matter
how far removed from the original licensor, are [] bound by the key
GPL terms,”

 However, ambiguities in
the language of GPL Section 2 give rise to multiple possible
interpretations of how far this copyleft provision reaches.

9

You may modify your copy or copies of the Program
or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications
or work under the terms of Section 1 above, provided
that you also meet all of these conditions . . . b) You
must cause any work that you distribute or publish,
that in whole or in part contains or is derived from the
Program or any part thereof, to be licensed as a whole
at no charge to all third parties under the terms of this
License. . . .

 including the requirement to license any derivative
work at no charge to third parties. Section 2 of the GPL is one of the
key provisions implementing these copyleft requirements. Section 2
states:

10

It is uncertain how far the obligations of this provision actually
reach. The first sentence of Section 2, quoted above, allows for

8 John Tsai, For Better or Worse: Introducing the GNU General Public

License Version 3, 23 BERKELEY TECH. L.J. 547, 551 (2008).
9 Id.
10 Free Software Foundation, GNU General Public License Version 2, GNU

OPERATING SYSTEM, http://www.gnu.org/licenses/gpl-2.0.html [hereinafter GPL
v2].Section 3 further requires that the licensee provide access to the source code of
the distributed program. GPL v2, Section 3.

270 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

modifications that would form a “work based on the Program.”
However, Section 2(b) requires that the GPL be extended to “any
[distributed] work . . . that in whole or in part contains or is derived
from the Program or any part thereof.” Furthermore, the subsequent
sentences of Section 2 use various other terms to describe the result
of modifications, including “modified files,” “modified program,”
and “modified work.”11

The first step in untangling Section 2 of the GPL is to understand
the scope of a “work based on the Program.” Section 0 of the GPL
states that “a ‘work based on the Program’ means either the Program
or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language.”

 This use of disparate terms clouds the true
effect of the provision.

12 A common
interpretation of this language is that the term “work based on the
Program” is directly linked to the concept of derivative works under
copyright law and therefore equivalent in scope.13 Advocates of this
interpretation point to the first clause of the sentence, which limits the
definition to “the Program or any derivative work under copyright
law.”14 The second clause, which is arguably broader, would then
simply be an “interpretive explanation . . . [which] gives an indication
of what the GPL drafters thought, hoped, or may argue in a dispute is
the meaning of the term ‘derivative works’ under copyright law.”15

11 GPL v2, Section 2. See also Lothar Determann, Dangerous Liasons –

Software Combinations as Derivative Works? Distribution, Installation, and
Execution of Linked Programs under Copyright Law, Commercial Licenses, and
the GPL, 21 BERKELEY TECH. L.J. 1421, 1487-88 (2006).

Thus, because the definition directly incorporates and hinges upon an
existing, statutorily-defined legal concept, any subsequent elaboration
is not sufficient to alter this concept and can be viewed as a statement

12 GPL v2, Section 0.
13 Gomulkiewicz, supra note 6, at 89. See also Michael F. Morgan, The

Cathedral and the Bizarre: An Examination of the “Viral” Aspects of the GPL, 27
J. MARSHALL J. COMPUTER & INFO. L. 349, 390 (2010) (stating that “the GPL.v3
seems to make it clear that certain terminology used in the GPL is intended to have
the same scope as the term ‘derivative work’ under copyright law” and pointing to
the GPL.v3 definition of the term “modify”).

14 GPL v2, Section 0.
15 Determann, supra note 11, at 1487.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 271

of opinion.16

The second step in understanding Section 2 is to note that the
conditions set forth in 2(a), (b), and (c) (“the lettered conditions”)
“apply to the modified work as a whole.”

 Therefore, a “work based on the Program” would mean
a derivative work as defined by the Copyright Act.

17 Here, the “modified work
as a whole” appears to refer to the “work based on the Program”
authorized by the first sentence of Section 2.18 If this phrase is read to
be limiting, then references within the lettered conditions to a
“modified file,” “modified program,” or “work that in whole or in
part contains or is derived from the Program” can be interpreted as
equivalent in scope to the defined term “work based on the
Program.”19

An alternative interpretation of Section 2 of the GPL elevates the
importance of the plain meaning of the provisions. For example, the
reference in Section 2(b) to a “work that in whole or in part contains .
. . the Program,” could be construed as including any work that
incorporates code from the Program, no matter how insignificant and
with no regard to whether the included code would be protectable
under the Copyright Act.

 Under this interpretation, the copyleft requirements of
the lettered conditions would only extend to works that qualify as
derivative works under the Copyright Act.

20 Thus, “Section 2(b)’s license condition
may apply to programs derived from minuscule amounts of code or
non-copyrightable code that would not otherwise make the host
program a derivative work according to copyright law.”21

16 See, e.g., Morgan, supra note 13, at 394 (“Accordingly, to the extent that the

GPL v2 suggests that the copying of any subject matter from ‘the Program’
necessarily makes a subsequent work a derivative work, that statement is
incorrect.”)

17 GPL v2, Section 2.
18 The second full paragraph of Section 2 later uses the term “work based on

the Program” as a direct substitute for the original “modified work as a whole.”
This direct substitution lends credence to the theory that the requirements of
Sections 2(a), (b), and (c) apply to any “work based on the Program.”

19 This implication is fair if the first sentence of the second full paragraph of
Section 2, “These requirements . . .,” is read as limiting the scope of the lettered
conditions only to “modified works.” An alternative interpretation of this sentence
is that it is non-limiting in the sense that it is simply identifying one category of
application out of several.

20 GPL v2, Section 2; Gomulkiewicz, supra note 6, at 90.
21 Gomulkiewicz, supra note 6, at 90. Further textual argument for this

272 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

Section II of this Article considers the applicability of the GPL to
loadable kernel modules under the first, narrower interpretation
discussed above. Section III discusses the second, broader
interpretation of the GPL and the effect of recent developments on its
possible application to loadable kernel modules.

II. APPLICABILITY OF THE GPL TO LOADABLE KERNEL
MODULES UNDER A DERIVATIVE WORKS ANALYSIS

As discussed above, the GPL attempts to restrict non-GPL

software from linking to GPL-licensed programs by asserting the
copyright holder’s exclusive right to prepare derivative works.22

 This
section first provides a brief description of courts’ changing attitudes
regarding the level of protection afforded to software programs under
the Copyright Act, particularly emphasizing the scope of derivative
work rights. Next, loadable kernel modules are introduced and
analyzed to determine whether they qualify as derivative works.

A. The Evolution of the Derivative Works Test Applied to Software

Over time, the protections afforded software programs and their
associated derivative work23

Early court decisions dealing with inter-changeable or inter-
operable media, such as Midway Mfg. Co. v. Artic International,

 rights have decreased as courts have
better understood the idea-expression dichotomy as applied to
software. In particular, as discussed below, courts have expressed
willingness to allow copying of software interfaces for purposes of
interoperability.

interpretation contrasts the use of “the modified files,” “the modified program,” and
“the modified work as a whole” with “any work that you distribute or publish.” See
GPL v2, Section 2 (emphasis added).

22 GPL v2, Sections 0, 2 and 3.
23 A derivative work is defined within the Copyright Act as “a work based

upon one or more preexisting works, such as a translation, musical arrangement,
dramatization, fictionalization, motion picture version, sound recording, art
reproduction, abridgment, condensation, or any other form in which a work may be
recast, transformed, or adapted.” 17 U.S.C. § 101 (2006).

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 273

Inc.,24 and Worlds of Wonder, Inc. v. Veritel Learning Systems, Inc,25
“looked at the output of the combination of [the original and the
follow-on] works rather than at the works themselves.”26 Under such
a broad definition, “courts would struggle to find any add-on
components or software that did not create an infringing
derivative.”27

The high point of copyright protection for software was the Third
Circuit’s decision in Whelan Assoc., Inc. v. Jaslow Dental Lab, Inc.

28
In Whelan, the plaintiff had provided defendant Jaslow Dental
Laboratory with software designed to aid in management of
defendant’s dental office.29 After Jaslow developed its own similar
office software based upon internal knowledge of Whelan’s program,
Whelan alleged that the new program infringed the copyright to the
original program.30 Although there were substantial “differences in
programming style, in programming structure, in algorithms and data
structures,” the two programs shared significant “overall structural
similarities.”31 The Third Circuit looked beyond the absence of
literal, verbatim copying of the source code and instead, by analogy
to a literary work, relied upon substantial similarities contained
within the structure, sequence, and organization – the “SSO.”32

24 Midway MFG. Co., v. Artic Int’l, Inc., 704 F.2d 1009, 1013-14 (7th Cir.

1983).

However, the Third Circuit went even further by suggesting that “the

25 Worlds of Wonder, Inc. v. Veritel Learning Sys, Inc., 658 F. Supp. 351
(N.D. Tex. 1986).

26 Douglas A. Hass, A Gentlemen’s Agreement: Assessing the GNU General
Public License and Its Adaptation to Linux, 6 CHI.-KENT J. INTELL. PROP. 213, 257
(2007).

27 Id.
28 Whelan Assoc., Inc. v. Jaslow Dental Lab, Inc., 797 F.2d 1222 (3d Cir.

1986).
29 Id. at 1225-27.
30 Id.
31 Id. at 1228.
32 Id. at 1234. (“The copyrights of other literary works can be infringed even

when there is no substantial similarity between the works' literal elements. One can
violate the copyright of a play or book by copying its plot or plot devices. . . . By
analogy to other literary works, it would thus appear that the copyrights of
computer programs can be infringed even absent copying of the literal elements of
the program.”)

274 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

sole idea of a computer program is the purpose the program seeks to
achieve. In Whelan, the purpose was “to aid in the business
operations of a dental laboratory.” According to the Third Circuit,
anything more specific in the program would be considered
protectable expression. This approach is quite sweeping in the
amount of protection it grants and various commentators have
criticized the decision for providing overbroad protection to
software.33

In the early 1990s, courts began to reduce the scope of copyright
protection afforded computer software. As illustrated by the Second
Circuit’s 1992 decision in Computer Associates International, Inc. v.
Altai, Inc.,

34 courts began to use more sophisticated analysis,
expanding on the idea-expression dichotomy. In Altai, the Second
Circuit adopted an “abstraction, filtration, comparison” test.35
Initially, the court divided the program into component parts based
upon increasing levels of abstraction. Then, the court filtered out
those portions of the software which were unprotectable at each level.
In performing the filtering step, the court removed from protection
those segments of the code which were a merger of expression and
ideas, using “scenes a faire” analysis, as well as those segments of
code which were dictated by efficiency concerns.36 Only after this
level of analysis was complete for each level of abstraction did the
court compare the two works to determine if, given protectable
expression, enough substantial similarity existed to warrant a finding
that infringement had occurred. Thus, the Altai court removed a
significant portion of the protection granted by Whelen by denying
“protection to specific elements of programs [such as] purely
functional features, features dictated by efficiency, and features
necessary for compatibility with other programs.”37

Building on Altai, the Ninth Circuit further honed the

33 See, e.g., Peter S. Menell, An Analysis of the Scope of Copyright Protection

for Application Programs, 41 STAN. L. REV. 1045, 1082-82 (1989).
34 Computer Assocs. Int’l, Inc. v. Altai, Inc., 982 F.2d 693, (2d Cir. 1992).
35 Id. at 706
36 Id. at 706-09. See also David C. Tunick, How to Avoid Infringing the

Copyright of a Computer Program: From the Perspective of a Computer
Programmer Turned Attorney/Law Professor, 4 J. INTELL. PROP. L. 49, 56-60
(1996).

37 Hass, supra note 26, at 261.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 275

“abstraction, filtration, comparison” test in deciding two video game
cases. In Sega Enterprises, Ltd. V. Accolade, Inc.,38 the court ruled
that despite Accolade’s reverse engineering of Sega’s game console
software, its use of only those portions of Sega’s software necessary
to make its games interoperate with the console was a fair use
privileged under § 107 of the Copyright Act.39 The court stated that
“[i]n some circumstances, even the exact set of commands used by
the programmer is deemed functional rather than creative for
purposes of copyright.”40 Further, “when specific instructions, even
though previously copyrighted, are the only and essential means of
accomplishing a given task, their later use by another will not amount
to infringement.”41 The court ruled that the Altai test, when applied to
the facts before it, allowed wholesale copying (during reverse
engineering) of the console software to the extent necessary to
determine which elements of the code which were not protected
expression.42 Furthermore, the court explicitly noted that “the
functional requirements for compatibility with the Genesis console . .
. are not protected by copyright.”43

In Sony Computer Entertainment v. Connectix Corp., the Ninth
Circuit again ruled reverse engineering to be a fair use.

44 In fact, the
court allowed copying of Sony’s code not just for the creation of
games that interoperate with the plaintiff’s game console, but for the
creation of software which would at times replace the plaintiff’s
console software and enable Sony Playstation compatible games to be
played on a PC.45 Again, they ruled that wholesale copying is
acceptable when necessary to locate unprotected elements of a
software program.46

38 Sega Enters. LTD. v. Accolade, Inc., 977 F.2d 1510 (9th Cir. 1992).

 In justifying this decision they found not just
those elements necessary for interoperability unprotected, but all

39 Id. at 1527.
40 Id. at 1524.
41 Id. at 1524 (quoting National Commission on New Technological Uses of

Copyrighted Works, Final Report 1 (1979)) (internal quotations omitted).
42 Id. at 1527.
43 Id. at 1522.
44 Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596 (9th Cir.

2000).
45 Id. at 608.
46 Id.

276 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

“functional elements.”47

 Thus, as courts have become increasingly familiar with computer
software, their unmistakable trend is to reduce the scope of protection
granted to program code. In particular, as evidenced by the Altai
filtration step and specific language from both the Sega and
Connectix opinions, code specifically required for interoperability
between programs has been explicitly identified as unprotectable,
functional code necessitated by efficiency. Thus, courts “have
become increasingly solicitous of parties who copy only interfaces of
copyrighted software, where the purpose of doing so is to achieve
interoperability.”

48

B. Applicability of the Modern Derivative Works Test
to Loadable Kernel Modules

To better understand the application of the GPL to loadable kernel

modules, a cursory knowledge of the purpose and structure of
loadable kernel modules is necessary. The Linux kernel is the core
section of Linux code: it is the heart of the operating system and is
responsible for allocating system resources such as power, memory,
or network connectivity.49 Loadable kernel modules, on the other
hand, are independently developed pieces of code that can be
“loaded” into the kernel at runtime (a process also known as
“dynamic linking”)50 and that often add new functionality or
capabilities.51

47 Id. at 599.

 A common example of a loadable kernel module is a
device driver, which allows for communication between the kernel

48 Sean Hogle, Unauthorized Derivative Source Code, 18.5 COMPUTER &
INTERNET LAW. 1, 6 (2001).

49 RUBINI, supra note 3, at Chapter 1.
50 This paper deals almost exclusively with the case of dynamically linked

kernel modules. For more in depth analysis of the legal ramifications of dynamic
vs. static linking of modules see Mitchell Stoltz, The Penguin Paradox: How the
Scope of Derivative Works in Copyright Affects the Effectiveness of the GNU GPL,
85 B.U. L. REV. 1439 (2005); Tsai, supra note 8; and Morgan, supra note 13. These
references conclude that static linking of a module into the kernel code almost
certainly creates a derivative work. They offer differing conclusions with regard to
dynamic linking.

51 RUBINI, supra note 3, at Chapter 1.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 277

and a specific piece of hardware.52 Dynamic linking of kernel
modules allows “the original program and the module [to] occupy
two separate object code files that can be sold and distributed
separately.”53

 Due to their ability to be dynamically linked, loadable kernel
modules represent a unique class of software somewhere between the
kernel itself and standalone applications. The module resembles an
extension of the kernel in the sense that it performs operating system-
like functions and communicates with the kernel using the kernel’s
own internal communication structure.54 However, a loadable module
also contains similarities to standalone applications. Module code is
never actually combined with the kernel code, but instead uses a
system of interfaces to allow intercommunication between the various
active components.55

A ruling that standalone applications were derivative works
would mean the demise of an entire industry: it is common practice
for proprietary applications to run on many different operating
systems, including Linux.

56 Fortuitously for application developers,
current (though perhaps not pre-Altai) decisions have clearly held that
the use of software elements necessary for interoperability are
unprotected expression.57

52 Id.

 Assuming these elements are the only ones

53 Stoltz, supra note 50, at 1449. Later, using a specified module interface, the
module can be inserted by reference into the kernel proper and await later
invocation of the module’s functions. It is important to note, however, that the
module code is not literally inserted into the kernel code; Instead, a reference to the
module’s location within the computer’s memory is inserted into the kernel code.
Then, when the module functionality is required, the kernel will communicate with
the module at the referenced location. After the module functionality is no longer
desirable, the module can be unloaded and any references to the module contained
within the kernel are eliminated.

54 RUBINI, supra note 3, at Chapter 2.
55 Hass, supra note 26, at 254-55.
56 Id. at 251.
57 See discussion of Altai, Sega, and Connectix in Section II.A, supra; but see

Edward J. Naughton, Bionic Revisited: What the Summary Judgment Ruling in
Oracle v. Google Means for Android and the GPL, BROWN RUDNICK ALERT, 5-8
(Nov. 2011), available at http://www.brownrudnick.com/nr/pdf/alerts/
Brown_Rudnick_Bionic_Revisited_Naughton_11-11.pdf (pointing to recent
developments in Oracle v. Google and arguing that inline functions and variables

278 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

borrowed from an operating system in the creation of an application,
standalone applications are not derivative works.

With this in mind, distinguishing between standalone applications
and kernel modules is arguably a matter of degree and not kind. For
instance, a Windows version of Adobe Photoshop cannot run on the
Windows operating system without using the Windows-specific
system call interface. In the same fashion, the device driver for a
video card in a Windows PC cannot communicate with the operating
system without using Windows-specific driver interfaces. Thus, both
the standalone application and the device driver module are
independent pieces of code designed to interact with a specific
operating system using specified interface code.

Depending on the desired function and design of a kernel module,
the interface between the module and the kernel can range from
simple to highly complex and incorporate a significant amount of
functional code.58 Under the logic of Altai, Sega, and Connectix,
however, it does not matter how much of the functional interface
code a module contains because this code is inherently unprotectable
under the Copyright Act. For instance, after noting that certain works
more closely track the core intent of the Copyright Act than others,
the Connectix court stated that “Sony's BIOS [software] lies at a
distance from the core because it contains unprotected aspects . . .
[w]e consequently accord it a ‘lower degree of protection than more
traditional literary works.’”59 Further, the Sega court noted that
“[u]nder a test that breaks down a computer program into its
component subroutines and sub-subroutines and then identifies the
idea or core functional element of each . . . many aspects of the
program are not protected by copyright.”60

cannot be deemed per se uncopyrightable and instead must be subjected to a line-
by-line analysis.)

 Because these courts

58 See, e.g., Hass, supra note 26, at 265 (discussing Linus Torvald’s comments
on the stability of the Linux API and the changing scope of module functionality)
and id., at 255 (discussing a driver facilitating communication between the kernel
and a high-speed data networking card, by “copy[ing] required data structures and
other function names” from the kernel).

59 Sony Computer Entm’t, Inc. v. Connectix Corp., 203 F.3d 596, 603 (9th Cir.
2000) (quoting Sega Enters. LTD. v. Accolade, Inc., 977 F.2d 1510, 1526 (9th Cir.
1992)).

60 Sega, 977 F.2d at 1525.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 279

specifically identified functional requirements for compatibility as
unprotected,61

It remains to be seen to what extent courts will be willing to allow
copying for the sake of interoperability. For instance, a module that
“pervasively incorporates” the underlying data structures or internal
communication processes of the kernel may be found to be a
derivative work, either because some of the code will be deemed
protectable expression or because the module copies non-literal
elements of the kernel, such as the structure, sequence, or
organization, which are protected under copyright.

 use of such unprotectable code should never, by itself,
lead to a finding of infringement upon an exclusive right of a
copyright holder.

62

Thus, under the interpretation of Section 2(b) of the GPL set forth
above in Section II of this Article, the requirements of the GPL will
only extend to those loadable kernel modules that would qualify as
derivative works under the Copyright Act. Modules that only
incorporate unprotected, functional code necessary for
interoperability do not trigger the requirements of the GPL.

 However,
assuming Linux kernel modules only contain the source code or
headers necessary to enable efficient interoperability of proprietary
code with the Linux Kernel, the modules fall squarely within the
protections elucidated by Altai, Sega and Connectix for successful
avoidance of classification as a derivative work.

63

III. APPLICABILITY OF THE GPL BEYOND A DERIVATIVE
WORKS ANALYSIS

A. Alternative Interpretations of the GPL

Unfortunately for software developers hoping to create

61 See id. at 1522; Connectix, 203 F.3d at 603.
62 Hogle, supra note 48, at 5. See also Naughton, supra note 57, at 8-9 (arguing

that Google’s attempt to “clean” the GNU C library (“glibc”) of copyright
protectable material when creating the Android Bionic library failed, in part,
because Google did not consider the copyright covering “the overall structure of the
API”).

63 This Article will further discuss the implication that this finding has upon
various modes of distribution in Section III, infra.

280 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

proprietary modules that interact with the Linux kernel, certain
provisions of the GPL might be interpreted to reach beyond a
straightforward derivative works analysis. As discussed in Section II
of this Article, supra, some commentators have pointed to the plain
language of Section 2(b) of the GPL, which requires the GPL to be
applied to any work “that in whole or in part contains or is derived
from the Program or any part thereof.”64

These requirements [the lettered conditions] apply to
the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and
can be reasonably considered independent and
separate works in themselves, then this License, and
its terms, do not apply to those sections when you
distribute them as separate works. But when you
distribute the same sections as part of a whole which
is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose
permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of
who wrote it.

 Thus, reading this phrase
literally, a module could be an independent, non-derivative work
under copyright law, but still required to be released under the GPL
by the express terms of the agreement because it contains “a part” of
the Program. Furthermore, later provisions of Section 2 also purport
to extend control beyond that of copyright law. In particular, after
setting forth the lettered conditions, Section 2 states:

Thus, it is not the intent of this section to claim rights
or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on
the Program.65

At first blush this portion of the GPL (“the collective works

64 GPL v2, Section 2(b); see e.g. Tsai, supra note 8, at 555-56.
65 GPL v2, Section 2. Section 2 subsequently states: “In addition, mere

aggregation of another work not based on the Program with the Program (or a work
based on the Program) on a volume of a storage or distribution medium does not
bring the other work under the scope of this License.”

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 281

provision”) appears to track copyright law by applying the
obligations of the GPL only to derivative works, but it introduces
ambiguity by attempting to apply the GPL to non-derivative works
which are “reasonably considered independent” if they are distributed
“as part of a whole which is a work based on the Program.”66

The GPL further muddies the water by suggesting, through an
interpretive gloss, intent to control the distribution of “collective
works based on the Program.”

 As
discussed above, the definition of the term “work based on the
Program” is open to interpretation and as such could be equal to or
broader in scope than the concept of derivative works under the
Copyright Act.

67 Once again, the extent of the GPL’s
reach is unclear due to the combination of statutorily defined
terminology68 with idiosyncratically worded concepts such as a
“work based on the Program.” However, the net effect of the
collective works provision appears to be an attempt extend the GPL’s
reach beyond the program and its derivative works to any “collective
work based on the program” which contains a modified GPL-covered
program in addition to any number of independent, non-derivative
sections, if those independent sections can be considered part of a
“modified work as a whole.”69

In the following sections, this Article discusses the application
and possible effects of these ambiguities on various factual scenarios.
In particular, each of the provisions introduced above will be assessed
in light of several recent Ninth Circuit cases that analyze the
intersection of copyright law and contract law. This distinction
between contract and copyright law is critical because, in the event
the GPL is interpreted as a contract, the remedy for breach, absent a
provision enabling injunctive relief, is likely limited to monetary

66 Id.
67 Id.
68 See 17 U.S.C § 101 (2010) (“A ‘collective work’ is a work, such as a

periodical issue, anthology, or encyclopedia, in which a number of contributions,
constituting separate and independent works in themselves, are assembled into a
collective whole”).

69 Section 2 of the GPL also notes that “mere aggregation of another work not
based on the Program with the Program (or with a work based on the Program) on a
volume of a storage or distribution medium does not bring the other work under the
scope of this License.”

282 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

damages.

B. Recent Decisions on the Intersection of Copyright Law and
Contract Law

Several recent Ninth Circuit cases have analyzed the license-

versus-sale dichotomy and expounded upon the interaction between
contract and licensing law. Although these cases are all
interpretations of the first-sale doctrine, they have implications on
how the Ninth Circuit will enforce software license agreements. The
trio of cases—Vernor v. Autodesk, Inc.,70 UMG Recordings, Inc., v.
Augusto,71 and MDY Industries, LLC, v. Blizzard Entertainment,
Inc.72

In Vernor, an eBay vendor brought an action seeking a
declaratory judgment that he had the legal right to resell copies of
Autodesk’s software packages.

—set limits on the availability of copyright infringement actions
as a remedy for non-compliance with an agreement, whether styled as
a contract or a license.

73 Autodesk claimed that the
agreement that accompanied the software (the “software license
agreement” or “SLA”) was, in fact, a license to use the software
under specific conditions, one of which forbade the resale of the
software.74 Vernor alleged that the software had been sold to its first
owner, rather than licensed, and therefore the first sale doctrine
applied.75

[A] software user is a licensee rather than an owner of
a copy where the copyright owner (1) specifies that
the user is granted a license; (2) significantly restricts
the user’s ability to transfer the software; and (3)
imposes notable use restrictions. Applying our
holding to Autodesk’s SLA, we conclude that CTA
[the initial transferee of the Autodesk software] was a

 The Vernor court, in holding that Autodesk was entitled to
an injunction halting re-sale of its software online, stated:

70 Vernor v. Autodesk, Inc., 621 F.3d 1102 (9th Cir. 2010).
71 UMG Recordings, Inc. v. Augusto, 628 F.3d 1175 (9th Cir. 2011).
72 MDY Indus., LLC v. Blizzard Entm’t, Inc., 629 F.3d 928 (9th Cir. 2010).
73 Vernor, 621 F.3d at 1104-06.
74 Id.
75 Id.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 283

licensee rather than an owner. . . .76

In UMG, the court refused to find that a statement on the label of
an unsolicited, promotional CD delivered via mail constituted a
license.

77 Even though the statements on the CDs purported to create
a license, the unsolicited nature of the mailing, coupled with the lack
of any affirmative statement or actions denoting acceptance made the
existence of a license problematic.78 In the absence of a license, the
distribution was ruled a “first sale” immunizing the defendant from
UMG’s claim of copyright infringement.79

In MDY, plaintiff MDY Industries sought a declaratory judgment
that sales of its software, a type of “bot” called “Glider,” did not
infringe Blizzard’s copyright in its popular “World of Warcraft”
online multi-player game.

80 Applying Vernor, the MDY court found
that the End User License Agreement (“EULA”), together with the
Terms of Use (“ToU”), constituted a license because Blizzard
“reserves title in the software and grants players a non-exclusive,
limited license. Blizzard also imposes transfer restrictions if a player
seeks to transfer the license...”81 However, the Ninth Circuit ruled
that use of the Glider software, which automated play within some
levels of Blizzard’s game, did not infringe the online game’s
copyright even though it violated the ToU of the game.82

In coming to this conclusion, the Ninth Circuit engaged in a more
detailed and nuanced

83

76 Id. at 1111.

 analysis of the exact provisions of the ToU at

77 UMG Recordings, Inc. v. Augusto, 628 F.3d 1175, 1180 (9th Cir. 2011).
78 Id. (“Our conclusion that the recipients acquired ownership of the CDs is

based largely on the nature of UMG's distribution. First, the promotional CDs are
dispatched to the recipients without any prior arrangement as to those particular
copies. The CDs are not numbered, and no attempt is made to keep track of where
particular copies are or what use is made of them. As explained in greater detail
below, although UMG places written restrictions in the labels of the CDs, it has not
established that the restrictions on the CDs create a license agreement.”).

79 Id. at 1180-81.
80 MDY Indus., LLC v. Blizzard Entm’t, Inc., 629 F.3d 928, 934-35 (9th Cir.

2010).
81 Id. at 938.
82 Id. at 941-42.
83 See Nancy S. Kim, The Software Licensing Dilemma, 2008 B.Y.U. L. REV.

1103, 1003-04 (2008) (“[S]oftware transactions are not a binary proposition. While
some transactions can clearly be identified as either licensing or sales deals, most

284 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

issue to determine whether they constituted conditions on the
copyright license or were purely contractual in nature. In this context,
the court stated that “contractual terms that limit a license’s scope
[are] ‘conditions,’ the breach of which constitute copyright
infringement.”84 The court referred “to all other license terms as
‘covenants,’ the breach of which is actionable only under contract
law.”85 Applying this distinction between conditions and covenants to
the provisions at issue, the court determined that the prohibition on
the use of automated “bots” was a covenant, rather than a condition.86

As justification for this conclusion, the court provided the
following policy views:

Therefore, the use of bots in violation of the ToU was simply a
breach of contract and did not rise to the level of copyright
infringement.

Were we to hold otherwise, Blizzard—or any
software copyright holder—could designate any
disfavored conduct during software use as copyright
infringement, by purporting to condition the license
on the player’s abstention from the disfavored
conduct. . . . This would allow software copyright
owners far greater rights than Congress has generally
conferred on copyright owners.87

In concluding its analysis of conditions and covenants, the Ninth
Circuit held that “for a licensee’s violation of a contract to constitute
copyright infringement, there must be a nexus between the condition
and the licensor’s exclusive rights of copyright.”

88 In other words,
“the potential for infringement exists only where the licensee’s action
(1) exceeds the license’s scope (2) in a manner that implicates one of
the licensor’s exclusive statutory rights.”89

entail both.”)

84 MDY, 629 F.3d at 939.
85 Id.
86 Id. at 939-40.
87 Id. at 941.
88 Id. (emphasis added).
89 Id. at 940. The MDY court also used the phrasing “the copyright owner’s

complaint must be grounded in an exclusive right of copyright” in place of “in a
manner that implicates one of the licensor's exclusive statutory rights.” Id.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 285

Together, Vernor, UMG, and MDY show an increasing focus on
the proper balance between copyright law and contract law. In
particular, the policy discussion in MDY exhibits a firm recognition
that licensing agreements present an opportunity for the misuse and
unsanctioned extension of copyright rights.90

The remainder of this Article applies these new legal tests to the
GPL. In particular, several of the GPL’s most debated terms are
applied to different scenarios and interpreted in light of the MDY trio
of cases. Under these cases, it is possible that either: 1) the GPL may
be found to be a contract and not a license, or 2) the provisions of the
GPL which necessitate the disclosure of non-derivative source code
to downstream recipients may be construed as contractual covenants.
If true, in neither case would a remedy of copyright infringement be
forthcoming.

 As such, the Vernor
court refined the legal test for distinguishing between a license and a
contract for sale. Further, even after determining that the agreement
contained a copyright license, the MDY court created an explicit test
for determining whether a particular provision in a license agreement
exceeds the scope of rights that Congress sought to confer upon
copyright owners and therefore should be regarded solely as a
contractual covenant.

C. General Public License or General Public Contract?

Arguably, the GPL is not a license agreement at all, despite its

internal protestations to the contrary.91 In Vernor, to qualify an
agreement as a license, the court required that the copyright owner (1)
specify that a user is granted a license, (2) include significant
restrictions on the transfer of the software, and (3) include notable use
restrictions.92

90 See Justin Van Etten, Copyright Enforcement of Non-Copyright Terms:

MDY v. Blizzard; Krause v. Titleserv, 2011 DUKE L. & TECH. REV. 7, 42 (2011)
(“The Ninth Circuit, in MDY, has explicitly created a rule against rightsholders
using copyright to enforce non-copyright terms, and has based this rule in the
unequivocal policy arguments that copyright should not be expanded by contract.”).

 The GPL refers to itself as a license several times and
states clearly that the recipient of the software is only being granted a

91 See, e.g., GPL v2, Section 4.
92 Vernor v. Autodesk, Inc., 621 F.3d 1102, 1110-11 (9th Cir. 2010).

286 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

license. Section 1 allows for copying and distribution of “verbatim
copies” of the Program under several minor conditions: namely, the
software must include a copyright notice, keep intact all notices that
refer to the GPL, and provide any recipients of the software with a
copy of the GPL.93 Section 3 provides additional terms required in
order to distribute the Program in object code. One could also view
the “copyleft” requirements of Section 2 as a form of restriction on
the transfer of the software in the sense that distribution of a work
based on the Program is only permitted if it is also licensed under the
terms of the GPL. The GPL appears to satisfy at least the first two
requirements of the three-part Vernor test. 94

However, the GPL does not appear to include any notable use
restrictions.

95 Use of software licensed under the GPL is not
restricted to the extent it does not involve distribution: “The act of
running the Program is not restricted, and the output from the
Program is covered only if its contents constitute a work based on the
Program (independent of having been made by running the
Program).”96

However, given the unique “copyleft” requirements of the GPL

 In addition, neither copying nor modification carries
any additional restrictions absent subsequent distribution. Thus, while
restrictions are placed upon the creation of derivative works and the
distribution of copies of the work, there do not appear to be any
restrictions regarding the actual “use” of the program. Absent
provisions restricting use, a strict literal reading of the Vernor
decision implies the GPL is not a license.

93 These conditions may not rise to the level of “significant” restrictions,

however.
94 One can argue, however, that copying and distribution of “verbatim copies”

under Section 1 or 3 is not the same, in a strict legal sense, as transferring the
licensed copy of the program. In this sense, Vernor’s requirement of “significant
restrictions on the transfer of the software” could be interpreted to require
restrictions on the particular, primary copy that is the original subject of the license.
621 F.3d at 1110-11. Furthermore, the copyleft provisions are referring to
distribution of a modified work rather than transfer of the particular copy that is the
primary subject of the license.

95 See, e.g., Eben Moglen, Enforcing the GNU GPL, FREE SOFTWARE
FOUNDATION, Sept. 10, 2001, http://www.gnu.org/philosophy/enforcing-gpl.html
(“The license does not require anyone to accept it in order to acquire, install, use,
inspect, or even experimentally modify GPL'd software.”).

96 GPL v2, Section 0.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 287

and the ambiguous, non-statutory nature of the term “use,” a court
may construe other GPL provisions as providing restrictions on use.
In fact, the Vernor court itself noted that “the SLA [Software License
Agreement] also imposed use restrictions against . . . modifying,
translating, or . . . removing any proprietary marks from the software
or documentation.”97 While a prohibition against modification or
translation is better classified as a restriction on derivative work
rights, the Vernor court explicitly recognized these as restrictions on
“use” in fulfillment of the third requirement.98 With this in mind, it
appears likely that the GPL would be interpreted as a license under a
Vernor-styled framework due to the restrictions discussed above.99

Even if the GPL is found to be a license, however, certain
provisions, when scrutinized under the MDY test, are likely to be
found to be contractual covenants rather than conditions upon the
license grant.

D. Alternative Interpretations of the GPL Applied in Light

of MDY

1. Distribution of a Loadable Kernel Module Standing Alone

The implications of the MDY case for GPL’s applicability to
loadable kernel modules are profound. As stated by the Ninth Circuit
in MDY, a finding of copyright infringement will only follow if there
is a nexus between the provision contained within the agreement and
the licensor's exclusive rights of copyright.100

97 Vernor, 621 F.3d at 1111.

 Assuming loadable

98 In addition, Autodesk’s restriction on “removing any proprietary marks from
the software,” id., may be analogous to the GPL’s requirement to maintain
copyright notices and provide a copy of the license to any downstream licensee.

99 It is also possible that a court would interpret the GPL as ineffective in light
of UMG. Similar to the “license” denied in UMG, the GPL does not provide for any
affirmative interaction between the putative licensor and licensee. For more
discussion of whether the GPL’s notice and language are sufficient to form a
binding contract under traditional “offer and acceptance” doctrine, see Kumar,
supra note 5, at 16-19; Margaret Jane Radin, Humans, Computers, and Binding
Commitment, 75 IND. L.J. 1125, 1132-33 (2000); Christian H. Nadan, Open Source
Licensing: Virus or Virtue?, 10 TEX. INTELL. PROP. L.J. 349, 362-63 (2002).

100 MDY Indus., LLC v. Blizzard Entm’t, Inc., 629 F.3d 928, 941 (9th Cir.

288 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

kernel modules are not derivative works of the Linux kernel,101

Under a narrow interpretation of the GPL, discussed in Section II,
supra, a “work based upon the Program” is equivalent in scope to the
concept of derivative works under the Copyright Act. If this is the
case, then the requirements of the lettered conditions of Section 2 and
of the collective works provision only apply to modified works that
would qualify as derivative works. Assuming that loadable kernel
modules containing only unprotected, functional code are not
derivative works of the Linux kernel, the requirements of the GPL do
not extend to these modules in any fashion. Thus, any entity that
holds a copyright on the kernel would not have any claim, grounded
in either contract or copyright law, that the terms of the GPL were
breached or the copyright infringed.

distribution of such modules under a license other than the GPL or
without the corresponding source code is at worst breach of a
covenant within the GPL, not meriting a finding of copyright
infringement.

Under the broader interpretation of the GPL discussed in Section
III.A, supra, the term “work based on the Program” incorporates any
work that contains any portion of the Program, no matter how
insignificant. In this case, the lettered conditions of Section 2 and the
collective works provision reach beyond a derivative works analysis
and require compliance with the GPL for programs containing any
portion of the code.102 However, non-compliance with these
conditions would not trigger a finding of copyright infringement
because distribution of a non-derivative work, standing alone, does
not implicate, or have a nexus with, any of the copyright holder’s
exclusive rights any more than distribution of a completely unrelated
work does.103

2010).

 Thus, under an MDY analysis, even the broader reading
of the GPL results only in a breach of contract action for distribution

101 See supra Section II.B.
102 This is assuming that the plaintiff copyright holder would be able to satisfy

a preliminary showing that a contract was, in fact, formed under Section 5 of the
GPL.

103 See, e.g., Nadan, supra note 99, at 369 (“The copyleft provision [of the
GPL] purports to infect independent, separate works that are not derivative [works]
. . . . Attempting to extract such rights exceeds the scope of the copyright.”).

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 289

of a loadable kernel module that is not a derivative work. The
implications of this finding regarding availability of remedies are
discussed in Section III.E, infra.

2. Distribution of a Loadable Kernel Module in Conjunction with an

Unmodified Linux Kernel

Adding an unmodified Linux kernel into the distribution package
should not change the legal conclusions reached above. Under the
narrower interpretation of the GPL, the loadable kernel module is not
a derivative work for the reasons set forth in Section II.B, supra, and
the requirements of the GPL only extend to the unmodified kernel.
Thus, the developer may distribute the unmodified kernel in full
compliance with Section 1 of the GPL and distribute the module as he
sees fit. Because neither the unmodified kernel nor the module is a
derivative work, the terms of Section 2 are never triggered or
implicated. Thus, under an interpretation of the GPL that hinges upon
a derivative works analysis, any entity that holds a copyright on the
kernel would not have any claim, grounded in either contract or
copyright law, that the terms of the GPL were breached or the
copyright infringed by the distribution of a loadable kernel module
and an unmodified kernel.

Under the broader interpretation of the GPL, in which a “work
based on the Program” includes any program containing any portion
of the kernel code, the module is subject to the requirements of the
lettered conditions of Section 2 and the collective work provision.
However, non-compliance with these requirements still amounts to
only a breach of contact claim. This is because the breach of contract
claim could only be based upon failure to distribute the module in
compliance with the requirements of Section 2; the unmodified kernel
is in complete compliance with the distribution requirements of
Section 1.104

104 This analysis does not apply however, if the unmodified kernel and the

module are, together, considered a single “modified work as a whole” or a
collective work. See Section III.D.3, infra.

 As discussed above in Section III.D.1, if the module is
not a derivative work but still subject to the terms of the GPL, then
non-compliance with the GPL will only lead to a breach of contract
claim: Distribution of an independent, non-derivative work does not

290 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

implicate, or have a nexus to, any of the copyright holder’s exclusive
rights. Thus, under the broader interpretation of the GPL, distribution
of a loadable kernel module with an unmodified version of the Linux
kernel still only exposes the distributor to a possible breach of
contract claim.

3. Distribution of a Loadable Kernel Module in Conjunction with a

Modified Linux Kernel

The legal results reached in the two preceding scenarios are
drastically altered if the distributor chooses to also distribute a
modified version of the Linux kernel. Under the narrower
interpretation of the GPL, although the module would not qualify as
either a derivative work or a “work based on the Program,” the
modified kernel would qualify as both. With this in mind, the
requirements of the lettered conditions of Section 2 and the collective
works provision would apply to the modified kernel. The legal
conclusion to this scenario depends upon a reading of the collective
works provision. In particular, whether the loadable kernel module
and the modified Linux kernel, when distributed together, constitute a
“modified work as a whole” or collective work will determine
whether the result is a copyright infringement or simply a breach of
contract claim.105

If the two programs, when distributed together, are ruled to
constitute a “modified work as a whole,” then the copyright has been
infringed because the modified kernel is unquestionably a derivative
work of the original kernel. Therefore, a provision that restricts how
this derivative work may be distributed would have nexus to the
exclusive distribution right of the copyright holder. As such, non-
compliance with this provision would lead to a finding of copyright
infringement.

If the modified kernel and the loadable module are not found to
be a single “modified work as a whole,” then the GPL has been
complied with if distribution of the modified kernel accords with all

105 For the Free Software Foundation’s interpretation of the phrase “modified
work as a whole,” see Frequently Asked Questions About Version 2 of the GNU
GPL, FREE SOFTWARE FOUNDATION, http://www.gnu.org/licenses/old-licenses/gpl-
2.0-faq.html#MereAggregation (last updated Jan. 8, 2012).

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 291

requirements of Section 2, regardless of whether the source code of
the module is opened. Under the narrower interpretation of the GPL,
a loadable kernel module that is not a derivative work does not
implicate any provisions of the GPL because it is not a “work based
on the Program.” As long as the modified kernel is distributed in
accordance with the GPL, the module is not implicated and there is
no claim grounded in either contract or copyright law.

Analysis similar to the above also applies under the broader
interpretation of the GPL, in which the copyleft requirements apply to
both the module and the kernel. If the module and the kernel are ruled
to be a single “modified work as a whole,” then failure to provide
source code for the module would likely be ruled a copyright
infringement because the modified kernel is a derivative work. If the
module is considered to be part of a single work with the kernel, then
it too would be a derivative work and a provision regarding
distribution of this derivative work would have a nexus to the
copyright holder’s exclusive distribution rights.

However, if the loadable module is not considered part of the
“modified work as a whole” then failure to provide source code for
the module would only give rise to a breach of contract claim.
Operating under the broader interpretation of the GPL, all copyleft
provisions apply to the module, regardless of whether it is a
derivative work. However, because it is not a derivative work,
distribution of this non-derivative work would not implicate, or have
a nexus to, any of the copyright holder’s exclusive rights, and thus
noncompliance would amount solely to a breach of contract.

E. MDY’s Effect on Availability of Remedies for Non-Compliance

with the GPL

Absent a finding of copyright infringement, the plaintiff’s
remedies must flow from a breach of contract claim. As the court in
MDY implied, breach of contract remedies are generally confined to
damages, and those damages are “generally limited to the value of the
actual loss caused by the breach.”106

106 MDY Indus., LLC v. Blizzard Entm’t, Inc., 629 F.3d 928, 941 n.3 (9th

Cir. 2010). See also, Sean Hogle, Conditions vs. Covenants: California Rulings
Threaten the Practical Enforceability of Open Source Licenses, 25.9 COMPUTER &

 On the other hand, the remedies

292 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

available to a copyright holder following a successful infringement
claim are much more favorable and include lost profits or a
reasonable royalty, statutory damages of as much as $150,000
(regardless of actual damages), and attorney’s fees in exceptional
cases.107

In a case where the GPL itself mandates that source code be
provided for free,

108 damages for breach will be very difficult, if not
impossible to ascertain, and arguably zero.109 Unlike the situation in
which a case is brought under copyright law, injunctive relief in a
breach of contract case is rarely awarded, especially when it is not
stipulated to within the agreement itself.110 The GPL contains no such
reference to injunctive relief as a remedy for violation of its
provisions. Thus, “in the open source context, where software is
licensed without charge, establishing economic loss could prove
daunting if not impossible.”111

 As such, even if a plaintiff is
victorious on the merits of a breach of contract claim based upon non-
compliance with the GPL, he may be unable to fashion any practical
remedy.

INTERNET LAW. 1, 2 (2008) [hereinafter Hogle, Conditions]; but see Jose J.
Gonzalez de Alaiza Cardona, Open Source, Free Software, and Contractual Issues,
15 TEX. INTELL. PROP. L.J. 157, 187 (2007) (“If [the GPL] is a contract, it seems
that a person who refuses to comply with the terms of the GNU GPL could be
forced to release the source code of his derivative work.”). Dr. Gonzalez is
presumably arguing that this forced “opening” could be reached under a specific
performance doctrine.

107 Hogle, supra note 106, Conditions at 2; Van Etten, supra note 90, at 11
(2011).

108 GPL v2, Section 1.
109 Kumar, supra note 5, at 15 (“If [contractual] consideration for the author is

the release of changes back to the community, how would a court financially
compensate the author under contract law? Money damages would not be an
appropriate remedy”).

110 Hogle, supra note 106, Conditions at 2 (“[I]njunctive relief is facilitated
by the irreparable harm presumption that applies if the plaintiff is likely to succeed
on the merits of the copyright infringement claim. . . . [while i]njunctive relief is
typically not available for breach of contract claim.”

111 Id.

2012] EXAMINING LOADABLE KERNEL MODULES UNDER GPL V2 293

CONCLUSION

Linux is a very popular operating system that is increasingly used
in embedded devices. Uncertainty regarding the legal consequences
of modifying proprietary software for, or simply linking proprietary
software to, a device running the Linux kernel makes it difficult for
developers of the proprietary software and embedded devices to reach
agreement.

The reason for uncertainty is the GPL, the license to which all
those using, modifying, or distributing Linux are bound. The GPL
purports to require that any software derived from or linked to
software licensed under it be distributed for free, with all source code
included. Requiring developers to distribute proprietary software for
free removes their ability to be compensated for providing their code
to a third party in object form. Requiring distribution of the
corresponding source code is even more damaging, because
publication of the source releases trade secrets to not only the version
of the code distributed under the GPL (say for a Linux version), but
for the same version released under a proprietary license (e.g., for any
other operating system).

Assuming Linux kernel modules only contain the source code or
headers necessary to enable efficient interoperability of proprietary
code with the Linux kernel, the modules fall squarely within the
analysis articulated by Altai, Accolade, and Connectix for successful
avoidance of classification as a derivative work. For the GPL to reach
beyond derivative works of the Linux kernel and effectively require
any software linked to it be distributed for free and with software’s
source code: (1) the GPL must be interpreted as a license rather than
a contract, and (2) the provisions of the license which are breached
must be of a type such that their breach merits a finding of copyright
infringement.

According to the recent Ninth Circuit MDY holding, a finding of
copyright infringement will only follow if there is a nexus between
the conditions (of the license) and the licensor’s exclusive rights of
copyright. Unless the “licensee’s” software is determined to be a
derivative work of software licensed under the GPL, none of the
exclusive rights of copyright are implicated, because though
reproduction and distribution occur, they are not reproduction or
distribution of anything in which the copyright holder has a legal

294 WASHINGTON JOURNAL OF LAW, TECHNOLOGY & ARTS [VOL. 7:3

interest. In essence, the recent MDY ruling, together with
conventional derivative works analysis, makes software modules
linked to the Linux kernel freely licensable without regard to release
of those modules’ source code because there is no practical remedy
for a licensee’s failure to follow the terms of the GPL.

	Loaded Question: Examining Loadable Kernel Modules under the General Public License v2
	Recommended Citation

	I. Obligations Under the GPL
	II. Applicability of the GPL to Loadable Kernel Modules under a Derivative Works Analysis
	A. The Evolution of the Derivative Works Test Applied to Software
	B. Applicability of the Modern Derivative Works Test to Loadable Kernel Modules

	III. Applicability of the GPL Beyond a Derivative Works Analysis
	A. Alternative Interpretations of the GPL
	B. Recent Decisions on the Intersection of Copyright Law and Contract Law
	C. General Public License or General Public Contract?
	D. Alternative Interpretations of the GPL Applied in Light of MDY
	1. Distribution of a Loadable Kernel Module Standing Alone
	2. Distribution of a Loadable Kernel Module in Conjunction with an Unmodified Linux Kernel
	3. Distribution of a Loadable Kernel Module in Conjunction with a Modified Linux Kernel

	E. MDY’s Effect on Availability of Remedies for Non-Compliance with the GPL

