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IS PROOF OF STATISTICAL SIGNIFICANCE
RELEVANT?

D.H. Kaye*

In the Old Testament it is written that *“Varying weights, varying
measures, are both an abomination to the Lord.”! In the classic treatises on
evidence it is written that the court or jury must weigh the evidence, and
upon weighing it, determine whether the plaintiff or the defendant prevails.
In assessing most evidence, courts are comfortable with the lack of an
orthodox set of weights and measures. However, some courts have indi-
cated that statistical evidence may well be cast out—if not as an abomina-
tion, as a scientific charlatan—unless it is subjected to a procedure known
as “hypothesis testing.’2 Roughly speaking, a hypothesis or significance
test determines whether an observed result is so unlikely to have occurred
by chance alone that it is reasonable to attribute the result to something
else. There are many rather mechanical procedures for performing these
tests and a number of judges, attorneys, and law professors have suggested
that hypothesis testing provides an objective, scientific means of settling
disputed questions on which statistical evidence is brought to bear.3 Dis-
crimination litigation, environmental cases, food and drug regulation, and
a variety of other administrative and judicial proceedings are obvious
arenas for hypothesis testing.# Differences between the percentage of
blacks selected for grand juries and the percentage in the community,’

*  Professor of Law and Director, Center for the Study of Law, Science and Technology, Arizona
State University. The author is indebted to Hans Zeisel for commenting on a draft of the article and to
Mikel Aickin for his insights into the role of statistical analysis in litigation.

Copyright © 1986 D.H. Kaye. All rights reserved.

1. Proverbs 20:10.

2. There are various types of “hypothesis testing.” Neyman-Pearson testing, which is the most
common and the main concern here, is conceptually distinct from Bayesian hypothesis tests. See M.
DEGROOT, PROBABILITY AND STATISTICS 381 (1975). The usefulness of Bayes test procedures for forensic
purposes is questioned in Kaye, Hypothesis Testing in the Courtroom, in CONTRIBUTIONS TO THE
THEORY AND APPLICATION OF STATISTICS (A. Gelfand ed. in press). In addition, although I shall use the
phrases “hypothesis testing” and “significance testing” interchangeably, one can distinguish between
them. See infra note 107.

3. See, e.g., Moultrie v. Martin, 690 F.2d 1078, 1082 (4th Cir. 1982); Braun, Statistics and the
Law: Hypothesis Testing and Its Application to Title VII Cases, 32 HASTINGS L.J. 59, 87 (1980).

4. See generally D. BARNES, STATISTICS AS PROOF: FUNDAMENTALS OF QUANTITATIVE EVIDENCE
(1983); C. CLEARY, McCORMICK ON EVIDENCE §§ 208-211 (3d ed. 1984) [hereinafter MCCORMICK];
Curtis & Wilson, The Use of Statistics and Statisticians in the Litigation Process, 20 JURIMETRICS J. 109
(1979).

5. E.g., Vasquezv. Hillery, 106 S. Ct. 617 (1986); Boykins v. Maggio, 715 E.2d 995 (5th Cir. 1983),
cert. denied, 466 U.S. 940 (1984). See generally Kaye, Statistical Analysis in Jury Discrimination
Cases, 25 JURIMETRICS J. 274 (1985).
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between the wages® or promotions? of male and female employees, between
the rates at which blacks and whites found guilty of capital offenses are
sentenced to death,® between the incidence of asbestosis in workers ex-
posed to high levels of asbestos dust as opposed to nonexposed workers,?
and between the rates of cancers among rats fed large amounts of the food
coloring red dye number two as opposed to a control group of rats'0
exemplify the many cases in which courts or administrators have puzzled
over the meaning of hypothesis tests. Considering the frequently voiced
suspicion that statistics can prove anything,!! an unvarying set of weights
and measures for statistical evidence would be a welcome antidote to more
nefarious or less sophisticated presentations.

This article examines the status of significance testing in litigation. Part [
describes the case law on the need for the procedure. Part II explains the
nature and terminology of hypothesis testing as used in court. Part III
enumerates some of the problems that arise in these forensic applications,
and Part IV pursues one such problem—that of selecting a “significance
level.” These sections show that explicit hypothesis testing is poorly suited
for courtroom use. Statements as to what results are or are not “statistically
significant” should be inadmissible. Part V suggests the use of other
statistical tools and terms that do not “test” hypotheses but can better aid
the finder of fact in judging the probative value of the statistical evidence.

I. THE DEMAND FOR HYPOTHESIS TESTING IN THE
COURTROOM

The idea that formal hypothesis tests should or must be used to assist the
judge or jury in evaluating statistical evidence is a recent phenomenon.
Before 1970, almost no federal cases adverted to “statistically significant”
evidence.!? In the early seventies, a trickle of reported cases mentioned
significance tests. Then, in 1977, an event that only attorneys could call
dramatic happened. The United States Supreme Court calculated a statistic

6. E.g., Valentino v. United States Postal Serv., 674 F.2d 56, 70-71 (D.C. Cir. 1982).

7. E.g., Sainte Marie v. Eastern R.R. Ass’n, 650 F.2d 395 (2d Cir. 1981).

8. McCleskey v. Zant, 580 F. Supp. 338 (N.D. Ga. 1984), rev’d on other grounds en banc sub nom.
McClesky v. Kemp, 753 F.2d 877 (11th Cir. 1985) cert. granted in part, 106 S. Ct. 331 (1986).

9. Reserve Mining Co. v. Environmental Protection Agency, 514 F.2d 492 (8th Cir. 1975).

10. Certified Color Mfrs. Ass’n v. Mathews, 543 F.2d 284 (D.C. Cir. 1976).

11. E.g., EEOC v. Federal Reserve Bank, 698 F.2d 633, 645-46 (4th Cir. 1983), rev'd on other
grounds sub nom. Cooper v. Federal Reserve Bank, 467 U.S. 867 (1984).

12. A search on December 11, 1984 of the general federal library of the LEXIS database revealed
that 519 cases used the words “statistically significant™ or *statistical significance.” Nearly two-thirds
of these cases were decided in the past four years, and only seven—barely more than one percent-—were
dated before 1970.
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known as the standard deviation.3 In footnotes to two opinions, Castaneda
v. Partida,'* and Hazelwood School District v. United States,'5 the Court
not only performed a few textbook calculations, but it also spoke of “two or
three standard deviations™ as being necessary to establish statistical signifi-
cance.!6 The lower courts reacted. In the following year, nearly forty
published opinions discussed the statistical sigificance of numerical evi-
dence. Although the Supreme Court had stated that its computations were
not intended to imply that this procedure always should be followed,!” in
Moultrie v. Martin'8 the Court of Appeals for the Fourth Circuit held that
“in all cases involving racial discrimination, the courts of this circuit must
apply a standard deviation analysis such as that approved by the Supreme
Court in Hazelwood before drawing conclusions from statistical compari-
sons.”1? The court reasoned that:

When a litigant seeks to prove his point exclusively through the use of
statistics, he is borrowing the principles of another discipline, mathematics
. . . . [He] cannot be selective in which principles are applied. He must
employ a standard mathematical analysis. Any other requirement defies logic
to the point of being unjust. Statisticians do not simply look at two statistics

. . and make a subjective conclusion that the statistics are significantly
different. Rather, statisticians compare figures through an objective process
known as hypothesis testing,20

While no other circuit appears to have gone to this extreme, most
discrimination plaintiffs relying on statistical evidence prize figures that
are “statistically significant,” and most defendants are delighted if they can
demonstrate that the numbers are “not statistically significant.” Thus,
many lower courts in Title VII cases have come to expect a “standard
deviation analysis” and to regard quantitative proof not couched in these
terms with suspicion, if not hostility.2! In these jurisdictions, hypothesis

13. The standard deviation measures the variability, or dispersion, of a batch of numbers. If all the
numbers are the same, the standard deviation is zero. If many of the numbers are far from the mean for
the entire set, the standard deviation is large.

14. 430 U.S. 482 (1977) (grand jury discrimination).

15. 433 U.S. 299 (1977) (racial discrimination in employment).

16. Hazelwood, 433 U.S. at 311 n.17; Casteneda, 430 U.S. at 496 n.17. For criticism of the
statistical analysis in Hazelwood, see, for example, Kaye, Book Review, 80 MIcH. L. REv. 833, 838-41
(1982); Smith & Abram, Quantitative Analysis and Proof of Employment Discrimination, 1981 U. ILL.
L. REv. 33, 52-53.

17. Hazelwood, 433 U.S. at 311 n.17.

18. 690 F.2d 1078 (4th Cir. 1982).

19. Moultrie, 690 F.2d at 1082.

20. Id.

21. See, e.g., Hill v. K-Mart Corp., 699 E.2d 776, 780 (Sth Cir. 1983). The details of the “standard
deviation analysis™ are not important to this article, but one cannot help observing that the apparent
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testing has become a practical necessity in cases involving statistical
proof.22

Despite the prevalence of hypothesis testing in discrimination litigation,
cases involving scientific identification evidence rarely mention the statisti-
cal significance of the forensic scientist’s findings. For example, in State ex
rel. Hausner v. Blackman,? the Kansas Supreme Court held that it was
error in a paternity action to allow testimony that blood group tests on the
mother, child, and alleged father implicated the defendant and that the
probability that these tests would exculpate a falsely accused man was
.70.%* In other words, the testimony that the court held inadmissible was
that the probability that the mother, child, and defendant would have had
the blood group types they did was .30 if the defendant was not the
biological father. Although the details of the “standard deviation analysis™
have no bearing here, the perspective of hypothesis testing which underlies
that analysis implies that the blood group data in Hausner do not support
(to the degree required in Castaneda and Hazelwood) the hypothesis that
the defendant is not the biological father.23

In other cases, experts have testified to much smaller probabilities that
would make a claim “suspect” in the manner described in Castaneda and
Hazelwood. Once again, however, neither the experts nor the courts have
employed these infinitesimal probabilities for significance testing. In Com-
monwealth v. Drayton,?6 for instance, a fingerprint expert stated that the
probability that the fingerprints of two different persons would match on

infatuation of the courts with this one procedure is such that, all too often, it is employed to the exclusion
of other, more appropriate methods. Kaye, Ruminations on Jurimetrics: Hypergeometric Confusion in
the Fourth Circuit, 26 JURIMETRICS J. 215 (1986); Meier, Sacks & Zabell, What Happened in Hazel-
wood: Statistics, Employment Discrimination and the 80% Rule, 1984 AM. B. Founp. REs. J. 139;
Sugrue & Fairley, A Case of Unexamined Assumptions: The Use and Misuse of the Statistical Analysts
of Castaneda/Hazelwood in Discrimination Litigation, 24 B.C.L. REv. 925 (1983).

22. In the words of one participant, “[tjhe judges don’t understand how far away three standard
deviations is from two but they have finally setoutarule. . . . You see complaint after complaint filed
in federal district court mentioning two standard deviations.” Michelson, Statistical Determination in
Employment Discrimination Issues, in THE USE/NONUSE/MISUSE OF APPLIED SOCIAL RESEARCH IN THE
Courts 109, 111-12 (M. Saks & C. Baron eds. 1980).

23. 233 Kan. 223, 662 P.2d 1183 (1983), aff’g, 7 Kan. App. 2d 693, 648 P.2d 249 (1982).

24. The court seemed to hold that evidence of the failure to exclude the defendant was inadmissible.
Hausner, 662 P.2d at 1190. The court also complained that the testimony as to the probability of this
outcome was entirely irrelevant to the determination of paternity. /d. at 1188. This is patently fallacious.
but perhaps the court meant that the expert did not explain the calculation in a way that would have made
it sufficiently useful to the jury.

25. See, e.g., Aickin & Kaye, Some Mathematical and Legal Considerations in Using Serological
Tests to Prove Paternity, in INCLUSION PROBABILITIES IN PARENTAGE TESTING 155 (R. Walker ed. 1983).
There may be a subtle fallacy in defining the null hypothesis in this fashion. See Aickin, Some Fallacies
in the Computation of Paternity Probabilities, 36 AM. J. HUMAN GENETICS 904, 907-08 (1984).

26. 386 Mass. 39, 434 N.E.2d 997 (1982).

1336



Statistical Relevance

twelve points of comparison was “one out of 387 trillion.” 27 Although the
Supreme Judicial Court of Massachusetts held that the expert had no
adequate basis for testifying to this probability,28 even when there is a solid
empirical foundation for calculation, most courts will admit the testimony
without considering its “statistical significance.”2?

It seems difficult to justify this difference in the treatment of evidence
apparently amenable to statistical analysis. If hypothesis testing is the
preferred way to evaluate statistical evidence of discrimination, then in the
absence of some cogent reason to think otherwise, hypothesis testing
should also be the method of choice for assessing identity evidence. Thus,
the growing insistence and reliance on hypothesis testing raise both doc-
trinal and practical problems.

The purpose of expert statistical testimony is to assist the trier of fact in
evaluating numerical information. Judges and juries must resolve disputed
factual questions as best they can, and they should not delegate this
decisionmaking task to statisticians, economists, social scientists, and
other experts by trusting to superficially impressive methods whose seem-
ing objectivity does not withstand analysis. “Hypothesis testing” is a
technical term for procedures that have important limitations, and “statisti-
cal significance” is a phrase that is easily misunderstood. Before any
general requirement for employing statistical test procedures evolves out of
practice or pronouncement, the nature of hypothesis testing and its limita-
tions and possible disadvantages in forensic applications should be clearly
understood. Part IT offers an elementary explanation of the ideas underlying
significance testing as a preliminary step in elucidating some of the prob-
lems with hypothesis tests as devices for evaluating statistical evidence.

II. THE LOGIC OF HYPOTHESIS TESTING

The essential idea behind the concept of statistical significance is easily
grasped. To introduce some of the terminology and steps involved in
performing a significance test, we shall consider a situation loosely based

27. Drayton, 434 N.E.2d at 1005.

28. Id. at 1005-06. A depressing number of cases in which probabilites computed without an
adequate empirical foundation have been bandied about in court are collected in MCCORMICK, supra
note 4, § 210. The most notorious is People v. Collins, 68 Cal. 2d 319, 438 P.2d 33, 66 Cal. Rptr. 497
(1968). For a thoughtful and sophisticated analysis of a much earlier case, see Meier & Zabell,
Benjamin Peirce and the Howland Will, 75 J. AM. STATISTICAL ASS’N 497 (1980).

29. See MCCORMICK, supra note 4, § 210. The exception is State v. Carlson, 267 N.W.2d 170
(Minn. 1978), and its progeny. In Braun, Quantitative Analysis and the Law: Probability Theory as a
Tool of Evidence in Criminal Trials, 1982 UTaH L. REv. 41, the author argues for increased use of
probablity calculations.
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on the facts in Moultrie v. Martin, the case in which the Fourth Circuit
announced its hypothesis testing requirement.3° A black defendant, con-
victed in 1977 in South Carolina of murdering a deputy sheriff, wishes to
obtain a writ of habeas corpus from federal court on the theory that the
grand jury that indicted him was selected in a way that discriminated
against blacks. He consults an attorney who discovers that in South Car-
olina, jury commissioners examine voter registration lists (which reveal the
race of the voters) to prepare a list of persons eligible for grand jury service.
To illustrate the simplest sort of hypothesis test, let us pretend that in 1977,
the commissioners, intent on discriminating against blacks, prepared two
such lists. One, which we shall call the “null list,” is perfectly representa-
tive of the voting list. Thirty-eight percent of the voters are black, and
thirty-eight percent of the persons on the null list are black. The other list,
which the officials kept secret and which we shall call the “alternative list,”
is only fifteen percent black. In 1977, the commissioners selected eighteen
persons from one of these lists to serve on the grand jury. Three of these
grand jurors, or seventeen percent, were black, and fifteen were white. The
commissioners insist that although they had prepared the alternative list as
part of a plan to prevent there being “too many” black grand jurors, they
abandoned this plan and used only the official, null list.

Petitioner’s counsel believes that in view of the existence of the secret
list, the disparity between the proportion of blacks on the voting list (.38)
and the proportion on the grand jury (.17) supports the claim that the
commissioners illegally drew the grand jury from the alternative list.
However, since counsel has heard that the appellate courts are beginning to
insist on “statistically significant” disparities, she warns her client that if
he does not come forward with the results of “an objective process known
as hypothesis testing,” he may lose his case.

At this point, a statistical consultant enters the case. He sets up a
statistical test to choose between two hypotheses. The first hypothesis he
calls the “null hypothesis,” and he writes it like this:

Hy: 6 = .38

When counsel (and later the judge) asks the expert what this means, he says
that Hy is an abbreviation for “null hypothesis,” and that the Greek letter 6
(theta) is a “parameter.” Here, 6 is the probability of selecting a black juror
on each independent draw from the list. The value of 6 is unknown, but the
null hypothesis asserts that it is .38, which is to say that the null list was
used. To be understandable, the consultant offers an analogy. He suggests
that one should think of the null hypothesis as an assertion like “the

30. See supra text accompanying note 18. Later we shall modify the more fanciful features of this
example to provide a more accurate and complete renditon of the actual facts in Moultrie.
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defendant is not guilty.” The hypothesis test is like a criminal trial that will
accept the null hypothesis H,, unless there is sufficient statistical evidence
against it.3!

The consultant next identifies an “alternative hypothesis,” which he
writes as H;: 8 = .15. This, he suggests, is like the government’s claim that
the defendant is guilty. H; asserts that the commissioners resorted to the
secret list from which a black has only a fifteen percent chance of being
chosen on each independent draw.

Now for the statistical test. The consultant computes a “P-value.”
Roughly speaking, he says, this is the probability of obtaining the observed
disparity (or an even greater disparity) if the null list had been used. In
symbols, P-value = Pr(Exfreme Data|H0). Leafing through a book and
muttering something about interpolating from a table of binomial proba-
bilities, the consultant says that the P-value for this data is .051. This, he
concludes, is not good enough to be “statistically significant” at the .05
level.32 In other words, the chances are greater than one in twenty that the
random sampling from the null list would produce a grand jury with no
more than three blacks. Therefore, the null hypothesis cannot be rejected.
Petitioner loses. Or does he?

At first glance, it might seem that the statistical analysis has demon-
strated that petitioner’s evidence is too weak to make out even a prima facie
case of racial discrimination.33 The statistician’s conclusion that the small
number of black jurors is not “significant” is the result of an objective
procedure—in the sense that anyone who correctly follows the unam-
biguous steps will come to the same conclusion. But this objectivity begs
the question. The real issue for the law is not whether every expert who
follows the same recipe will agree that the observations are not “signifi-
cant” at the .05 level. Rather, two evidentiary issues are present. With
regard to the weight of the finding, the pertinent question is whether such
uncontroverted testimony dictates the presence or absence of a prima facie
case. As to the finding’s admissibility, the issue is whether the testimony
that the numbers are “significant” sufficiently advances the understanding

31. Reliance on this analogy is not entirely hypothetical. See, e.g., D. BARNES, supra note 4, at
146; Feinberg, Teaching the Type I and Type II Errors: The Judicial Process, AM. STATISTICIAN, June
1971, at 30. It can be misleading, however, because the significance level bears no simple relationship to
the the burden of persuasion. Kaye, supra note 2; Kaye, Statistical Significance and the Burden of
Persuasion, 46 Law & CoNTEMP. Pross. 13 (Autumn 1983).

32. Part III.A discusses the ubiquitous .05 level.

33. On the role of statistics in establishing a prima facie case in discrimination litigation, see
generally Segar v. Smith, 738 F.2d 1249 (D.C. Cir. 1984); D. BALDUS & J. COLE, STATISTICAL PROOF OF
DiscRIMINATION (1980); W. CoNNOLLY & D. PETERSON, USE OF STATISTICS IN EQUAL EMPLOYMENT
OPPORTUNITY LITIGATION (1980). The Supreme Court has implied that a P-value of .05 or less is needed
to establish a prima facie case of disparate treatment. Casteneda v. Partida, 430 U.S. 482, 497 n. 17
(1977). See generally Kaye, supra note 16; infra note 51.
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of the trier of fact to be worth the effort consumed in its presentation and
explanation.

Before confronting these questions, however, it is worth stating how the
perspective that our imaginary statistical consultant adopted captures the
essence of hypothesis testing even with more esoteric statistical models. In
our Moultrie variation, a simple model of the process giving rise to the data
enabled the consultant to perform the hypothesis test. The consultant
posited that each draw from a voter list was independent with a fixed, but
unknown, probability (depending on which list was used) of producing a
black juror. This picture of the selection process is a probability model. The
unknown probability—technically called the parameter of the model—was
either .38 (if the null list had been used) or .15 (if the alternative list had
been employed). The hypothesis test used here focused on the particular
value of 0 in the context of this model. Distinct values for 8 make certain
outcomes more likely than others, and the probability of various extreme
outcomes arising when 0 has the value given by the null hypothesis is the P-
value.

The same concepts underlie hypothesis testing of parameters of the more
complex models that are becoming familiar in discrimination litigation,3*
in antitrust cases,® in estimating lost profits,3® and in certain admin-
istrative proceedings.3” The statistical models typically involve parameters
whose values are unknown.38 Data from records such as employee files can
be used to estimate the values of these parameters. The theory behind
hypothesis testing in such settings is that if the model were to generate not
one batch of data, but repeated batches, the values for the parameters
estimated from each batch of data would be distributed about the true value
in a probabilistically well-defined way. Knowledge of this theoretical
distribution of the estimates about the true value leads to the P-value.3?

34. E.g., Lehman v. Trout, 465 U.S. 1056 (1984); Valentino v. United States Postal Serv., 511 F.
Supp. 917,944 (D.D.C. 1981), aff 'd, 674 F.2d 56 (D.C. Cir. 1982); Presseisen v. Swarthmore College,
442 F. Supp. 593 (E.D. Pa. 1977) aff'd mem., 582 F.2d 1275 (3rd Cir. 1978); Rubinfeld, Econometrics
in the Courtroom, 85 COLUM. L. REv. 1048 (1985). Cf. Coble v. Hot Springs School Dist., 682 F.2d
721, 730-33 (8th Cir. 1982) (chiding plaintiffs for not applying multiple regression analysis).

35. See, e.g., Finkelstein & Levenbach, Regression Estimates of Damages in Price-Fixing Cases,
46 Law & CoONTEMP. PrROBS. 145 (Autumn 1983); Rubinfeld & Steiner, Quantitative Methods in
Antitrust Litigation, 46 Law & CONTEMP. PROBS. 69 (Autumn 1983).

36. E.g., Christian Broadcasting Network v. Copyright Royalty Tribunal, 720 F.2d 1295 (D.C. Cir.
1983), cert. denied, 106 S. Ct. 1245 (1986); Spray-Rite Serv. Corp. v. Monsanto Co., 684 F.2d 1226 (7th
Cir. 1982), aff’d, 465 U.S. 752 (1984).

37. See, e.g., South Dakota Pub. Util. Comm’n v. Federal Energy Regulatory Comm’n, 643 F.2d
504, 513 n.13 (8th Cir. 1981); Finkelstein, Regression Models in Administrative Proceedings, 86 HARv.
L. REv. 1442 (1973).

38. Nonparametric methods exist, but they do not appear to be used very often in litigation.

39. Processes such as salary assignments or promotions do not always lend themselves to con-
vincing stochastic models. For a way to interpret P-values in these situations, see Freedman & Lane,
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For example, in Segar v. Smith,*0 black employees of the Drug Enforce-
ment Administration (DEA) alleged that the DEA discriminated against its
black agents in salaries, promotions, and other matters. Plaintiffs hired
economists to develop a linear regression model relating salaries of DEA
agents to years of federal experience,*! years of nonfederal experience,
education, and race. That is, the experts posited that the salary each DEA
agent receives can be described by an equation that involves: (a) a coeffi-
cient times the number of years of employment with the federal govern-
ment; (b) another coefficient times the years of nonfederal experience; (c) a
third coefficient times some measure of educational attainment (the opin-
ion does not describe this variable); (d) a fourth coefficient times the race of
the agent;*2 and (e) an error term with certain convenient statistical proper-
ties. The four coefficients—including the coefficient of the race variable—
are unknown parameters. For brevity, let us call the coefficient for race by
the Greek letter 3 (beta). The regression analysis uses the records of the
employees’ salaries to estimate (3. Derived from a particular batch of
records, this estimate is called a statistic to distinguish it from the param-
eter that it estimates. In Segar, for employees hired after 1972 and on the
payroll in October 1978, the estimated value of 8 was -$1,026. Assuming,
among other things, that there is neither interaction nor correlation between
race and the other variables that determine salary, this statistic indicates
that, on average, a black agent received about a thousand dollars less than a
white agent of the same experience and education. But -$1,026 is only an
estimate based on the data at hand. If there were a different group of
employees, and hence different data, the estimated value of B might depart
from -$1,026.

Recognizing this variability in the statistic that estimates 3, the Segar
experts tested whether the coefficient of -$1,026 was significantly different
from zero. They took the null hypothesis to be that the parameter for race is
zero. In symbols, Hy: B = 0. If this null hypothesis, and the assumptions
listed above are correct, then an agent’s race would have no impact on the
salary he or she received. A black and a white agent who are equal with
respect to all other variables would receive the same salary (subject to an
amount given by the error term that reflects the inherent variability in
setting salaries and the analyst’s inability to take into account every factor

Significance Testing in a Nonstochastic Setting, in A FESTSCHRIFT FOR ERICH L. LEHMAN 185 (P. Bickel,
K. Doksum & L. Hodges, Jr. eds. 1983).

40. 738 FE.2d 1249 (D.C. Cir. 1984), cert. denied, 105 S. Ct. 2357 (1985).

41. The court of appeals stated that the variable was “prior federal experience,” Segar, 738 F.2d at
1261, while the district court wrote that the variable was “years of federal experience.” Segar v.
Civiletti, 508 F. Supp. 690, 696 (D.D.C. 1981). Neither opinion gives a full description of the fitted
equation.

42. Presumably, race is coded as a one if the agent is black and a zero otherwise.
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that determines salaries). An alternative hypothesis is that the coefficient
for race is different from zero, that is, H;: B # 0. If certain additional
restrictive assumptions about the error term hold, then the analyst can
compute the probability that the estimated value for B would be at least as
far from zero as it turned out to be if the null hypothesis were true. If we can
be a little bit loose with the term “data,”3 this probability can be abbrevi-
ated as Pr(Extreme Data|H,)—the probability of finding the data (or other
data that are no more supportive of Hy) given that the null hypothesis Hy is
correct. In other words, this probability is the P-value for the estimated race
coefficient. In Segar v. Smith, this number was less than .05; hence,
plaintiffs’ experts reported that race was “significant” at the .05 level. The
court of appeals, reviewing such results, concluded that the regression
analysis had “uncovered evidence of significant discrimination in salary
levels, . . .74

Segar and our variation on Moultrie convey some sense of how hypoth-
esis tests are used in court. The details of the tests will vary.4> Standard
deviations may be mentioned in one case, but not in another.46 Still, the
logic of statistical significance does not change. The statistician posits a
probabilistic mode] of the process giving rise to the data. This model may
be a simple binomial model, as in Moultrie, a more involved regression
model, as in Segar, or it may be something else entirely. Whatever it is, it
has unknown parameters, and the hypothesis test is supposed to say
something about these parameters. The statistician computes the proba-
bility that the model will generate data at least as aberrational as the
observed data if the value of the parameter specified by the “null hypoth-
esis” is true. If this probability is below .05, the statistician concludes that
the observed data are “statistically significant” evidence that the unknown
parameter has the value stated in the “alternative hypothesis.”

III. THE LIMITATIONS OF HYPOTHESIS TESTING

A. Selecting a Significance Level

The forensic applications of hypothesis tests presented in Part II are
explicit about the P-value needed for “significant” results. Careful and
honest experts will explain that significance has (or has not) been found at a
particular level, such as .05. They will say that one can (or cannot) reject
the null hypothesis at this significance level. Unfortunately, not all experts

43. The calculated coefficient, like any other statistic, is a function of the data.
44, Segar, 738 F.2d at 1263.

45. See supra note 21.

46. Id.
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are this precise, and the courts have been impressed with such conclusory
statements as “a variance [sic] in excess of 2.33 standard deviations is a
‘highly statistically significant disparity.’”47

Where the experts are clear about a significance level, they, like Segar’s
economists, tend to choose the .05 level. Presumably, they adopt this figure
because it sees frequent use in many academic fields. While recognizing
that “the law has not set any precise level at which statistical significance
can be said to be sufficient to permit an inference of discrimination, 8 the
court of appeals in Segar found various statistical showings to “support an
inference” when the .05 level was satisfied and “not to permit an in-
ference” when this level was not attained.® The only reason given for the
.05 level was that “social scientists usually accept a study that achieves
statistical significance at the .05 level.”30 In this regard, the Segar court
was following the lead of the Supreme Court, which previously had pointed
to the popularity of this number among social scientists.>!

This reverance for social scientific norms may be encouraging to some
social scientists, but it should prompt us to ask why the .05 figure has
achieved such prominence in that domain. Social scientists did not devise
most of the statistical methods seen in court, they did not originate
hypothesis testing, and they did not establish the .05 level as anything
special. Rather, social scientists adopted the methods and conventions of
others who were concerned primarily with problems in biology. The
practice of using certain standard levels of significance, particularly .05,
can be traced to the influence of the eminent British statistician Sir R.A.
Fisher.52 Fisher wrote:

47. Harrell v. Northern Elec. Co., 672 F.2d 444, 446-47 (Sth Cir. 1982); ¢f. Lewis v. NLRB, 750
F.2d 1266, 1272 (5th Cir. 1985) (court refers to “statistically significant” results without stating the
significance level of the P-value); Miles v. M.N.C. Corp., 750 E.2d 867, 873 (11th Cir. 1985) (same).

48. Segar, 738 E.2d at 1282.

49. Id. at 1283. Relying on a finding of the district court, the court of appeals suggested that the
reason that certain statistics did not achieve acceptable levels of statistical significance was not that the
null hypothesis was true, but rather that the sample size *“was too small to generate statistically
significant evidence of discrimination . . . .” Id. Putting the weak statistical showing to one side, the
court of appeals held that enough other probative evidence existed to support the district court’s
determination that the DEA discriminated in promotions. Id.; ¢f. Coser v. Moore, 739 F.2d 746, 754
n.3 (2d Cir. 1984) (“While recognizing that [the .05] significance level has no talismanic importance,
we accept it for purposes of this case as a measure of validity.”).

50. Segar, 738 F.2d at 1282. The court referred also to the fact that the Justice Department’s
Uniform Guidelines on Employee Selection rely on the .05 level. Id. at 1282-83.

51. InCastanedav. Partida, 430 U.S. 482, 497 n.17 (1977), the Court observed that a disparity of
two or three standard deviations would be “suspect” to a social scientist. The P-value for a disparity of
two standard deviations in either direction from the mean of a normally distributed random variable is
about .05.

52. Fisher, a statistician and geneticist at the agricultural experiment station at Rothamsted,
England, was the father of the randomized experiment, the general use of regression, and the
mathematical derivation of the probability distributions of several important test statistics. He was not
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It is convenient to draw the line at about the level at which we can say: “Either
there is something in the treatment, or a coincidence has occurred such as
does not occur more than once in twenty trials.” . . . If one in twenty does
not seem high enough odds, we may, if we prefer it, draw the line at one in
fifty (the 2 per cent point), or one in a hundred (the 1 per cent point).
Personally, the writer prefers to set a low standard of significance at the 5 per
cent point, and ignore entirely all results which fail to reach that level. A
scientific fact should be regarded as experimentally established only if a
properly designed experiment rarely fails to give this level of significance.

As one contemporary statistician has remarked: “There you have it. Fisher
thought 5% was about right, and who was there to disagree with the
master?” >4

As Fisher’s explanation reveals, there is no sharp border between “sig-
nificant,” and “insignificant.” Although a few commentators and courts
have inadvertently suggested otherwise,? as the P-value decreases, evi-
dence gradually becomes stronger.’® As a result, most modern statistics
texts and journals discourage the reporting of results as “significant” or
“insignificant” in favor of explicit statements of P-values. Courts should do
likewise. There is no strictly objective basis, in science or in anything else,

the originator of tests of significance, but his writings on statistics in scientific research were exceed-
ingly influential.

53. Fisher, The Arrangement of Field Experiments, 33 J. MINISTRY AGRIC. GR. BRIT. 504 (1926). as
quoted in Savage, On Rereading R.A. Fisher, 4 ANNALS OF STATISTICS 471 (1976). Despite this
quotation, Fisher did not simply report results as “significant” or “not significant.” He made liberal use
of P-values in his work, and he cautioned his fellow statisticians that “{w]e have the duty of formulating.
of summarising, and of communicating our conclusions, in intelligible form, in recognition of the right
of other free minds to utilize them in making their own decisions.” Fisher, Statistical Methods and
Scientific Induction, 17 J. ROYAL STATISTICAL SOC’Y SERIES B 69, 77 (1955).

54. D. MOORE, STATISTICS: CONCEPTS AND CONTROVERSIES 292 (1979).

55. E.g., Watkins v. Scott Paper Co., 6 Empl. Prac. Dec. (CCH) 8912 (S.D. Ala. 1973) (“If chi-
squared or phi reaches a certain level for a certain sample size, validity is established.”); Delgado.
Beyond Sindell: Relaxation of Cause-In-Fact Rules for Indeterminate Plaintiffs, 70 CALIE. L. REV. 881,
885 n.19 (1982) (“If [the number of cases of a disease corresponding to the significance level] is
represented by 100 + N, then cases beyond this number are evidence of a new cause or agent™); Sperlich
& Jaspovice, Methods for the Analysis of Jury Panel Selections: Testing for Discrimination In a Series
of Panels, 6 HASTINGS CONST. L.Q. 787,794 (1979) (“probabilities fall into two classes: significant and
nonsignificant™); Note, Statistics as Evidence of Age Discrimination, 32 HasTINGS L.J. 1347, 1354
(1981) (*The rejection of the null hypothesis constitutes evidence of discrimination.™).

56. This is so if the conditions giving rise to the data, the method of data collection, and the
alternative hypothesis do not change. In comparing the resuits of two different experiments or of
observational studies (which may lack randomization and controls), one must consider far more than
the P-values for each set of results. Within the context of one experimental or observational design.
however, lower P-values indicate stronger statistical evidence for the alternative hypothesis. Thus.
contrary to what may be inferred from loose statements like those in note 55, supra, data that does not
rise to some preordained level of significance is still evidence, and it may be fairly good evidence at that.
But see Meier, Sacks & Zabell, supra note 21, at 152 (“If a difference does not attain the 5% level of
significance, it does not deserve to be given weight as evidence of a disparity. It is a ‘feather.”™).
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for believing that a proposition is true simply because the evidence for it is
“statistically significant™ at the .05 level.>” Thus, instead of dismissing the
statistical disparities that did not attain “significance” at the .05 level and
relying entirely on other evidence,8 the trial and appellate courts in Segar
should have considered the actual magnitudes of the P-values. Statistical
evidence need not be dispositive to be helpful in building a prima facie
case.

B. Designating the Null Hypothesis

In addition to the difficulty in justifying the choice of a level of statistical
significance, there is a further problem. Using a significance level like .05
puts the burden of proof, so to speak, on the proponent of the alternative
hypothesis. In most situations, this hypothesis will not be accepted unless
there is strong evidence against the null hypothesis. Why should the null
hypothesis have this advantage over the alternative hypothesis? A court or
jury not fully conversant with statistical terminology could think that
experiments or observations that do not uncover any “significant” differ-
ences supply decisive evidence that no real difference exists.50

C. Misleading Terminology

Another reason for excluding, or at least clearly explaining, testimony
that the statistical data are “not significant,” “significant,” or “highly

57. Meier, Damned Liars and Expert Witnesses, 81J. AM. STATISTICAL Ass’N 269, 270-71 (1986).
Fisher’s views on the use of significance levels in scientific inference may be worth restating. As
indicated in text accompanying note 53, supra, he recognized that the choice of the .05 level is arbitrary.
He also believed that results said to be significant at any level should not ipso facto be taken as proving
the existence of a scientific phenomenon. R. FISHER, THE DESIGN OF EXPERIMENTS 13—14 (9th ed. 1971)
(“It is open to the experimenter to be more or less exacting in respect of the smallness of the probability
he would require before he would be willing to admit that his observations have demonstrated a positive
result.”).

58. See supra note 49.

59. Eventhe “inexorable zero,” which the courts took to be dramatic evidence of discrimination in
the days before hypothesis testing in court, may not be sufficient to warrant rejection of the null
hypothesis at the .05 level. E.g., Capaci v. Katz & Besthoff, 711 F.2d 647, 654 (5th Cir. 1983). To some
extent, however, this depends on what one takes the alternative hypothesis to be. See Rubinfeld, supra
note 34, at 1056-62.

60. In Williams v. Florida, 399 U.S. 78 (1970), the Supreme Court cited empirical research (of
dubious quality) on the functioning of twelve-member as opposed to six-member juries. Emphasizing
the failure of these limited studies to discern any significant difference between the two types of juries,
the Court placed the burden of empirical proof on the wrong party. See Lempert, Uncovering
‘Nondiscernible’ Differences: Empirical Research and the Jury-Size Cases, 73 MicH. L. Rev. 643
(1975); ¢f. Kaye, supra note 16 (pointing to a similar error in Hazelwood School Dist. v. United States,
433 U.S. 299 (1977)).
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significant”®! is that in the context of hypothesis testing these terms lack
their ordinary meaning. The magnitude of an observed disparity does
influence the P-value. But a P-value is not a direct measure of the magnitude
of an observed disparity, and it provides no necessary indication of the
importance of an observed difference. With small samples, large differ-
ences can be “insignificant.” Apparently, this happened with some of
plaintiffs’ statistics in Segar.62 Conversely, with large samples, picayune
differences can be “significant.”%3 For example, statistical analysis might
show that science majors receive “significantly” better grades in law
school than liberal arts students, but if the difference were only a hundredth
of a point on a 4.0 scale, no one should care very much about this
“significant” difference. Segar, which produced one of the best opinions
on proof of salary disparities by regression analysis, speaks of “evidence of
significant discrimination”® when what is meant, presumably, is “signifi-
cant evidence of discrimination.”% The ease with which the language of
significance testing can be misunderstood is one more reason to steer clear
of this terminology.%®

Difficulty with the language of significance testing is especially telling in
jury trials. Most judges, upon study or reflection, can appreciate the
distinction between statistical signficance and practical importance.5’
However, most untutored jurors probably will not recognize that an expert’s
testimony that certain statistical proof is “highly significant” may not mean
that a substantial effect has been observed. To be sure, the opposing party
can elicit the distinction by cross-examination or through its own experts,
but this generally is an imperfect and costly palliative. The result of a
significance test or an unadorned statement of the P-value is not itself
evidence. Each is merely expert testimony admitted to assist the fact finder

61. See, e.g., Geller v. Markham, 635 F.2d 1027, 1032 (2d Cir. 1980) (expert characterized
proportion as “very significant” statistically, about “600 times the level generally required for
statistical significance”).

62. See supra note 49.

63. Rubinfeld, supra note 34, at 1067-68.

64. Segar, 738 F.2d at 1263.

65. The estimated values of the parameter associated with the variable for race tended to be on the
order of $1,000, as in the one regression described in Part I1. If a coefficient of this magnitude is large
enough to be considered a gross disparity—and it probably is—then it is correct to refer to it as
evidencing “significant discrimination.” This may be precisely what the court of appeals had in mind
when it used the phrase. Given the ambiguity of the word “significant,” however, it is impossible to
know whether the court characterized the disparity as “significant” because the observed coefficient
was large, because its P-value was under .05, or both.

66. This aspect of significance testing has not escaped the attention of social scientists. See, e.g.,
Skipper, Guenther & Nass, The Sacredness of .05: A Note Concerning the Uses of Statistical Levels of
Significance in Social Science, 2 AM. SOCIOLOGIST 16, 17 (1967).

67. See, e.g., Bilingual Bicultural Coalition on Mass Media, Inc. v. FCC, 595 F.2d 621 (D.C. Cir.
1978) (Robinson, J., dissenting).
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in evaluating the statistical data. A pronouncement that the evidence is
“statistically significant” adds nothing of substance to a precise statement
of the P-value. The dangers of confusion, misleading the jury, and undue
time-consumption, which can make even relevant evidence inadmissible
under Rule 403,58 outweigh the negligible probative value of testimony
about “significance” or “hypothesis tests.” %9

Like “significance,” “confidence” is a technical term with a meaning
that is not what most people think—even those with introductory training
in statistics. Despite criticism,” some statisticians continue to speak of the
“confidence” that a decisionmaker can have in the result of a hypothesis
test. This confidence is simply one minus the significance level. Thus,
statements like the following appear: “when led to a rejection of the null
hypothesis at a level of significance of .05, a court can be at least 95%
confident that a disparity of treatment of the relevant groups exists.”7! It
should come as no surprise that the judges, who are offered such advice,
accept and propagate these characterizations.??

Unfortunately, significance probabilities do not translate so freely into
expressions of subjective certitude. The probability that the alternative
hypothesis is true is nor generally equal to one minus the significance
probability.”? As the California Supreme Court discerned in the slightly

68. See MCCORMICK, supra note 4, § 185.

69. Iamassuming that the expert witness must present the P-value and explain the idea behind this
number rather than merely assert that it is “significant,” so that the marginal probative value of the
expert’s imprimatur of significance is de minimus. A clear statement of the P-value seems essential if
(a) the expert is to follow good statistical practice, and (b) the factfinder is to have any chance of
comprehending what the expert means when he or she characterizes the statistical evidence as

“significant.” See Lempert, Statistics in the Courtroom: Building on Rubinfeld, 85 CoLuM. L. REv.
1098, 1101-02 (1985). For these reasons, conclusory testimony about “significant” results (testlmony
that does give a reasonably explained P-value) should be inadmissible.

70. E.g., Chandler, The Statistical Concepts of Conﬁdence and Significance, 54 PSYCHOLOGY
BuLL. 429 (1957).

71.  Braun, supra note 3. Comparable misstatements may be found in D. BARNES, supra note 4, at
162; Bamnes, A Common Sense Approach to Understanding Statistical Evidence, 21 SAN DIEGO L. REV.
809, 831 (1984); Cohen, Confidence in Probability: Burdens of Persuasion in a World of Imperfect
Knowledge, 60 N.Y.U. L. Rev. 385, 401 (1985).

72. InCraik v. Minnesota State Univ. Bd., 731 F.2d 465, 476 n.13 (8th Cir. 1984), the majority of
the panel wrote that “[a] finding that a disparity is statistically significant at the 0.095 or 0.01 level
means that there is a 5 per cent. or 1 per cent. probablility, respectively, that the disparity is due to
chance.” Judge Swygert, whose dissenting opinion included an extended discussion of regression
methodology, replete with graphs and tables, stated that since “each coefficient was statistically
significantat the 1% level . . . we can be 99% confident that each was different from zero.” Id. at 510.
For other examples of this falhcy, see Vasquez v. Hillery, 106 S. Ct. 617, 621 (1986); Rivera v. City of
Wichita Falls, 665 F.2d 531, 545 n.22 (1982); National Lime Ass’n v. EPA, 627 F.2d 416, 453 (D.C.
Cir. 1980); United States v. Georgia Power Co., 474 E.2d 906, 915 (5th Cir. 1973).

73. Forarecent reminder of this point, see Fisher, Statisticians, Econometricians, and Adversary
Proceedings, 81J. AM. STATISTICAL Ass’N 277, 280 (1986); ¢f. DeGroot, Doing What Comes Naturally:
Interpreting a Tail Area Probability As a Posterior Probability or a Likelihood Ratio, 68 J. AM.
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bizarre case of People v. Collins,’ if the probability that a randomly
selected person will fit an eyewitness’s accurate description of a robber is as
small as 1/12,000,000, it does not follow that the probability that this
person is the robber exceeds 0.99999. In a sufficiently large population,
several people may fit the same description.”

There is, of course, a reason for using the word “confidence” to denote
the complement of the significance level. It relates to the notion of a
“confidence interval.” A “confidence interval” is an estimate of a param-
eter stated as a range of values that the unknown parameter might have.
Such an interval estimate has two components—the interval within which
the parameter is reported to lie, and the “confidence coefficient.” This
confidence coefficent helps determine the width of this interval and it
equals one minus the significance level for a particular hypothesis test.

For example, suppose that a simple random sample selected in a public
opinion poll commissioned to support a change of venue motion shows that
sixty-five percent of the people questioned have the impression that the
defendant is guilty. Suppose further that in view of the sample size, this
finding leads to an estimate, with a ninety-five percent confidence coeffi-
cient, that between sixty and seventy percent of the population share this
impression. To test at the .05 level whether the null hypothesis that the
proportion of the population leaning toward guilt is any particular number
(say fifty percent), we need only ask if that number lies within the interval
estimate. If it does not (as is the case for fifty percent), then the sample
proportion warrants rejection at the .05 level of the claim that the popula-
tion proportion is the hypothesized number. But, contrary to what some
courts might think,’® the confidence coefficient of ninety-five percent for
this estimate does not mean that it is ninety-five percent probable that the
population proportion is between sixty and seventy percent. The ninety-five
percent “confidence” pertains only to the statistical procedure that gener-
ates an interval estimate. The confidence coefficient of ninety-five percent
means that if a great many simple random samples had been taken and a

STATISTICAL Ass’N 966 (1973) (describing conditions under which the common fallacy turns out to be
correct.)

74. 68 Cal. 2d 319, 438 P.2d 33, 66 Cal. Rptr. 497 (1968).

75. See, e.g., Collins, 66 Cal. Rptr. 497 (1968); Meier, Sacks & Zabell, supranote 21, at 149 n.40:
Tribe, Trial by Mathematics: Precision and Ritual in the Legal Process, 84 Harv. L. REv. 1329 (1971).
For more illustrations of the distinction between the P-value level and the probability on which the case
should turn, see Kaye, Statistical Significance and the Burden of Persuasion, supra note 31.

76. E.g., Vuyanich v. Republic Nat’l Bank, 505 F. Supp. 224 (N.D. Tex. 1980). Again, in view of
the explanations that appear in law reviews and treatises as well as in court, one can hardly blame the
courts for having this impression. See, e.g., D. BARNES, supra note 4, at 35; W. LOH, SOCIAL RESEARCH
IN THE JUDICIAL PROCESS: CASES, READINGS AND TEXT 410 (1984); Cohen, Confidence in Probability:
Burdens of Proof in a World of Imperfect Knowledge, 60 N.Y.U. L. Rev. 385 (1985); Sprowls, The
Admissibility of Sample Data into a Court of Law: A Case History, 54 UCLA L. Rev. 222 (1957).
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different confidence interval computed for each such sample, about ninety-
five percent of these intervals would have included the unknown parameter.
From the viewpoint of classical statistics, with its frequency based inter-
pretation of probability, this does not imply that the parameter has a ninety-
five percent chance of being in any particular interval, such as the sixty
percent to seventy percent one.”’ Because this point is difficult to grasp,
testimony about “confidence” flowing from significance tests or about the
“confidence coefficient” of interval estimates promises to be more mis-
leading than edifying. If so, such testimony should be excluded from the
expert’s presentation.’8

D. Searching for Significance

Repeated applications of significance testing confuse the interpretation
of a significance level even more. Research that fails to uncover significance
tends not to be published. From the viewpoint of other researchers, this can
be troublesome, since it unwittingly may condemn them to repeat the
search for an effect that does not exist.” From the perspective of an attorney
looking for an impressive footnote, this bias is not so bad because if enough
studies are conducted, statistical error almost guarantees that some will
come out the desired way even if there is no real effect.80

77. E.g., V. BARNETT, COMPARATIVE STATISTICAL INFERENCE 36-37 (2d ed. 1982); Aickin, Issues
and Methods in Discrimination Statistics, in STATISTICAL METHODS IN DISCRIMINATION LITIGATION 168
(D. Kaye & M. Aickin eds. 1986).

78. 'This is not to say that the confidence intervals themselves should be excluded. Quite the
contrary, when the confidence interval can be computed it should be displayed, for it has several
advantages over a statement of the P-value. First, a confidence interval is more revealing than a P-value
and includes all the information that is present in the P-value. Second, a confidence interval does not
assign the null hypothesis to one party or the other. Finally, the width of the interval is a graphic measure
of the probative value of the statistical evidence. These thoughts are developed further in Part V.

When a confidence interval is used in court, however, it should not be denominated a “confidence”
interval because the confidence coefficient does not equal the subjective confidence that one should
have in the truth of a relevant proposition. The more neutral phrase “interval estimate” might be used,
and the “confidence coefficient” referred to simply as a “frequency coefficient” for that estimate.

79. E.g., Zeisel, The Significance of Insignificant Differences, 19 Pus. OpiNION Q. 319 (1955). The
following parable has been used to illustrate the point:

There’s this desert prison, see, with an old prisoner, resigned to his life, and, a young one just
arrived. The young one talks constantly of escape, and, after a few months, he makes a break. He's
gone a week, and then he’s brought back by the guards. He’s half dead, crazy with hunger and
thirst. He describes how awful it was to the old prisoner. The endiess stretches of sand, no oasis, no
signs of life anywhere. The old prisoner listens for a while, then says, “Yep, I know. I tried to
escape myself, twenty years ago.” The young prisoner says, “You did? Why didn’t you tell me, all
these months I was planning my escape? Why didn’t you let me know it was impossible?” And the
old prisoner shrugs, and says, “So who publishes negative results?”

J. HupbsoN, A Caskt oF NEED (1968), as quoted in Walster & Cleary, A Proposal for a New Editorial
Policy in the Social Sciences, AM. STATISTICIAN, April 1970, at 16, and in D. MOORE, supra note 54, at
293.

80. There are some situations in which the opposite problem arises. See A.W.F. EDWARDS,
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To illustrate how this can happen, consider the problem of deciding
whether a coin is biased. The probability that a fair coin will produce ten
heads when tossed vigorously ten times is (¥2)!19 = Vio2s. Observing ten
heads for the first ten tosses would therefore be strong evidence that the coin
is biased. Since the P-value of Y1024 is less than .05, one could say that these
observations are statistically significant at the .05 level (and at much
smaller levels as well). Nevertheless, if a fair coin is tossed a few thousand
times, it is quite likely that at least one string of ten consecutive heads will
appear.

This problem can develop, probably in more virulent form, in testimony
about the more elaborate statistical models mentioned in Part II. Almost
any large data set—even pages from a table of random digits—will contain
some unusual pattern®! that sufficient computer time and ingenuity will
discover.82 Having detected that pattern, the analyst who performs a
specific test for it will find statistical significance. But like a string of ten
heads in thousands of coin tosses, which has a P-value of just under .001
when viewed in isolation, this result proves nothing.

Once one becomes aware of it, the problem of interpreting multiple P-
values or significance tests obtained from the same set of data seems
ubiquitous. In Certified Color Manufacturers Association v. Mathews,%
for example, manufacturers of food additives disputed the claim that the
coloring agent popularly known as red dye number two is carcinogenic.
The Food and Drug Administration, in terminating its provisional approval
of the substance, relied on a controlled (but poorly executed) two-and-a-
half-year experiment in which its scientists randomly assigned rats to four
groups, and fed each group a diet having a different concentration of the

LIKELIHOOD: AN ACCOUNT OF THE STATISTICAL CONCEPT OF LIKELIHOOD AND ITS APPLICATION TO
SCIENTIFIC INFERENCE 180 (**(s]equential rather than concentrated assaults on the null hypothesis are
practically powerless in difficult cases; it is like trying to sink a battleship by firing lead shot at it for a
long time.”).

81. D. MOORE, supra note 54, at 294. Thus, it has been reported that murderers generally have
long, narrow noses and slit-like mouths, and that suicides tend to occur when atmospheric ozone levels
are falling. Curry, The Relationship of Weather Conditions, Facial Characteristics and Crime, 39 J.
CriM. L. & CRIMINOLOGY 253, 259 (1948). A more recent survey purported to show a remarkable
correlation between using an IBM personal computer and craving pepperoni pizza. 1 PC Mag. 59 (Apr.
1983).

82. See, e.g., Diaconis, Theories of Data Analysis: From Magical Thinking Through Classical
Statistics, in EXPLORING DaTa TABLES, TRENDS, AND SHAPES 8-9 (D. Hoaglin, F. Mosteller & J. Tukey
eds. 1985). This problem arises frequently in multiple regression with many variables. See Denton,
Data Mining As an Industry, 67 REV. ECON. & STATISTICS 124 (1985); Freedman, A Note on Screening
Regression Equations, 37 AM. STATISTICIAN 152 (1983). Here, the intuition of many courts—which
suggests that the more variables that are included in the model, the better—leads them astray. See, e.g.,
McCleskey v. Zant, 580 F. Supp. 338 (N.D. Ga. 1984), rev'd on other grounds sub nom, McCleskey v.
Kemp, 753 F.2d 877 (11th Cir. 1985), cert. granted in part, 106 S. Ct. 331 (1986).

83. 543 F.2d 284 (D.C. Cir. 1976).
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additive. Some rats died before the study ended; the rest were killed and
examined at the close of the experiment. A biostatistician analyzing the
results reported that “it appears that feeding FD&C Red No. 2 at a high
dosage results in a statistically significant increase in a variety of malignant
neoplasms among aged Osborne-Mandel female rats.”’84 One senses that a
series of hypothesis tests were performed, but only those involving certain
types of tumors and certain types of rats in the control and treatment groups
showed statistically significant associations. To sustain the agency’s action,
this may have been evidence enough, but the multiple testing (not- to
mention the logical hiatus between a P-value and subjective confidence in
the alternative hypothesis) implies that it would be a mistake to think that
this experiment established that there is a probability of .95 or more that
high doses of red dye number two cause cancer in rats.

Multiple testing was present in Moultrie v. Martin,35 the very case in
which the Fourth Circuit imposed its requirement of hypothesis testing
and, acting as its own statistician, purported to show that petitioner’s
evidence of discriminatory grand jury selection was not statistically signifi-
cant. The Moultrie variation given in Part II presented only part of the
data.8 On appeal from the denial of a post-conviction petition for habeas
corpus, the Fourth Circuit Court of Appeals tabulated statistics on the
representation of blacks on grand juries over a seven-year period. Using the
“standard deviation analysis” mentioned in Part I,%7 the court reported the
following values for the t-statistic (the number of standard deviations from
the mean of a hypothetical distribution associated with the null hypoth-
esis): -3.4, -.9,-.9, .1, .1, -1.4, -1.8. Despite its rhapsodic discussion of
hypothesis testing,38 the court did not perform a formal test to see whether
this sequence of outcomes was signficant. Instead, it eyeballed the num-
bers, gave little weight to the earliest year, which had the largest disparity,
and concluded that the serial t-statistics did not show discrimination. Had
the court thrown out the first year entirely and performed a hypothesis test
on the remainder of the data, it would have had to report that, given the

84. Mathews, 543 F.2d at 290.

85. 690 F.2d 1078 (4th Cir. 1982).

86. In addition, the actual case did not involve any “secret” or “alternative” list of registered
voters. The alternative hypothesis is therefore more complex than the one used in Part II.

87. For descriptions of the mechanics of the so-called “standard deviation analysis™ that seems to
have captured the imagination of the courts, see, e.g., authorities cited in Kaye, supra note 16, at 837
n.21. The cited authorities indicate some of the limitations of the “standard deviation analysis.”

88. See supra Part I.
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probability model it was using, the statistics were statistically significant at
the .05 level.®°

As this discussion indicates, there are some statistical methods for
coping with multiple P-values that permit meaningful hypothesis testing in
certain cases.® But no truly general solution is known,?! and the existing
methods would be of little avail in the typical case where a regression
analyst has run through a variety of models to arrive at the one the analyst
considers the most satisfactory. In these situations, attorneys and courts
should not be overly impressed with claims that the observed coefficient or
other quantity of interest is “significant.” Instead, they should be asking
how the analyst developed and refined the proposed model.

E. Assessing the Model

In evaluating the usefulness of hypothesis testing, it is important to
understand that what is being tested is generally limited to a statement
about a parameter within the context of a probabability model. For in-
stance, in the modified version of Moultrie v. Martin introduced in Part II,
the null hypothesis was Hy: 8 = .38. This is a claim about the parameter 0,
the chance of selecting a black for the grand jury on each draw from the
voter list. This parameter is embedded in a model that postulates that every
draw is independent, and that the probability of drawing a black grand juror
is fixed. The hypothesis test is designed to let us conclude something about
6—it tells us nothing about the model’s validity. The alternative hypothesis
is not that the model is wrong. It is that the model is right—selection was
random with a fixed probability—but that the alternative list was used, so
that the model’s parameter, 6, is .15 rather than .38.

Yet, the model almost surely is wrong.®2 Even if the jury commissioners

89. Kaye, supra note 5. Even so, the court, pursuing the logic of hypothesis testing, might well
have concluded that petitioner was not entitled to prevail. Petitioner did not provide evidence of the
proportion of blacks who were registered voters in any year except 1977, the year that he was indicted
and tried. The court’s null hypothesis was that this population parameter was the same in the preceding
six years. If the proportion of registered blacks in the South Carolina county was on the rise from 1971 to
1977, the resulting P-value (which is not far below .05) is understated.

90. See, e.g., R. MILLER, SIMULTANEOUS STATISTICAL INFERENCE (2d ed. 1981); Follett & Welch,
Testing for Discrimination in Employment Practices, 46 Law & CONTEMP. ProBs. 170 (Autumn 1983);
Gastwirth, Statistical Methods for Analyzing Claims of Employment Discrimination, 38 INDUS. & LAB.
REL. REv. 75 (1985); Kaye, supra note 5; Petrondas & Gabriel, Multiple Comparisons by Rerandomiza-
tion Tests, 78 J. AM. STATISTICAL ASS’N 949 (1983).

91. See, e.g., Aickin, supra note 77.

92. The model posits what is technically known as a Bernoulli process, and it gives rise to a
binomial distribution for the number of blacks selected as grand jurors. A more exact model would
recognize that the probability of drawing a black name changes as the number of voters not yet picked
for jury service changes with each selection. The distribution generated by this more realistic model
would be hypergeometric. Oddly, the courts seem to prefer the Bernoulli model, and have devised their
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in the actual case were discriminating, the notion that they were doing so
through an “alternative list” is slightly absurd.? Identifying the null
hypothesis with “no discrimination” and the alternative hypothesis with
“discrimination,” as some courts are wont to do,* is valid only if the
alternative hypothesis is part of a probability model that resembles the
process of discrimination.%3

Similar remarks apply to more complex statistical models. The analyst
postulates a model with a certain mathematical structure. The analyst then
“tunes” the model to fit the data. Finding a decent fit tends to confirm the
choice of model. Hypothesis tests, however, usually concern the param-
eters of the model without addressing the reasonableness of the model
itself.96 Furthermore, when more than one model is advanced, such as
when there is an argument about the number of intercorrelated variables
that should be put into a multiple regression equation,” or when there is a
dispute over the value of doing cohort analysis instead of regression
analysis, there is no simple or single mathematical test for deciding which

own rules for handling small samples. E.g., EEOC v. Federal Reserve Bank, 698 F.2d 633, 650 (4th
Cir. 1983). Although the technical objection to the Bernoulli model can be important in employment
discrimination cases, see Kaye, supra note 21, in the typical jury selection case, the specific binomial
and hypergeometric distributions usually are almost identical. See Kaye, supra note 5.

93. Onthe other hand, it might be that the commissioners would always summon a white when one
was randomly picked, and would summon every other black whose name randomly appeared. The
appropriate statistical model for this process differs from the one presented for the case of the
“alternative list.”

94. E.g., EEOCv. American Nat’l Bank, 652 F.2d 1176, 1192~93 (4th Cir. 1981) (“chance” versus
“the only other hypothesis—discrimination™).

95. Cf. Rubinfeld, supra note 34, at 1056-62 (importance of specifying alternative hypothesis
correctly).

96. V. BARNETT, supra note 77, at 31; Meier, Sacks & Zabell, supra note 21, at 152-53. An
appendix in Landes & Posner, Joint and Multiple Tortfeasors: An Economic Analysis, 9 J. LEGAL STUD.
517, 552 (1980), illustrates the point. The authors use a multiple regression model to show that statutes
that permit contribution among joint tortfeasors (which the authors regard as less economically efficient
than the common law rule of no contribution) are more likely to be found in states with public policies
that generally sacrifice efficiency. Examining the t-statistics for the regression coefficients, Landes and
Posner conclude that their statistical analysis “indicates a positive and significant relationship between
the government-expenditures variable [used to measure a state’s proclivity for inefficient policies] and
the probability that a state allows contribution.” Although they report that the fitted regression equation
has an R-square of only .09, they never test the hypothesis that there simply is no regression relationship
of the type they presuppose. Yet the ordinary least square regression model, which is what they appear
to have used, is inferior to a logistic model when the dependent variable is binary. Campbell, Regression
Analysis in Title VII Cases, 36 STAN. L. Rev. 1299 (1984), calls attention to this type of problem, but the
emphasis on R-square as a solution is misguided.

97. E.g., Valentino v. United States Postal Serv., 511 E Supp. 917 (D.D.C. 1981}, aff'd, 674 F.2d
56 (D.C. Cir. 1982); Presseisen v. Swarthmore College, 442 F. Supp. 593 (E.D. Pa. 1977).

98. Segarv. Smith, 738 F.2d 1249, 1263, 1285-86 (D.C. Cir. 1984); Trout v. Hidalgo, 517 F. Supp.
873 (D.D.C. 1981), aff’d sub nom., Trout v. Lehman, 702 F.2d 1094 (D.C. Cir. 1983), vacated, 465
U.S. 1056 (1984); Valentino v. United States Postal Serv., 511 F. Supp. 917 (D.D.C. 1981), aff’d, 674
F.2d 56 (D.C. Cir. 1982).
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model is superior.

This is not to say that standards for evaluating the appropriateness of a
given model do not exist. They do, and there are even some hypothesis tests
that can be helpful.® Knowledgeable statisticians may well reach the same
conclusions in a particular case. But as we move into these matters, we
leave the simplicity of a single hypothesis test for a particular parameter far
behind. There will be disputes among statisticians about *“‘reasonableness™
or “appropriateness,” which may begin to sound suspiciously like the
courtroom exchanges among psychiatrists and other experts from the
“softer” sciences.!% There may be only one right answer, but no known
mathematical algorithm will produce it.10!

F. Contemplating the Alternatives

In discussing significance testing, I have traveled a path obscured by
specialized vocabulary and concepts. It may be helpful to summarize the
route. First, I have argued that the choice of the significance level—the
point at which we will reject the null hypothesis—is outside the scope of
simply applying a given test to the data to see whether the numerical
evidence is “statistically significant.” The mechanical quality of the hy-
pothesis test itself may seem to ensure objectivity, but unless the selection
of the significance level is also objective and sensible, this seeming objec-
tivity is illusory. Second, I have suggested that designating a particular
hypothesis to be the “null hypothesis™ for testing at a demanding signifi-
cance level gives an advantage to the party whose position is consistent
with the alternative hypothesis—an advantage that may interfere with the
law’s allocation of the burden of persuasion. Third, I have argued that terms
like “significant” and “confident” are misleading, since they pertain
merely to the reproducibility of results. In view of these problems, I have
suggested that these terms be banished from courtroom discourse. The trier
of fact is better served by a clear statement and explanation of the P-value or
an interval estimate, than by a statistician’s characterization of a particular
P-value as “significant” or “not signficant.” Beyond this, I have warned
against being taken in by significance tests or P-values that are obtained

99. See, e.g., D. BELSLEY, E. KUH & R. WELSCH, REGRESSION DIAGNOSTICS: IDENTIFYING INFLU-
ENTIAL DATA AND SOURCES OF COLLINEARITY (1980); S. WEISBERG, APPLIED LINEAR REGRESSION (2d ed.
1985).

100. Courts that are sensitive to these matters find little solace in the seeming objectivity of
hypothesis testing. See, e.g., Presseisen v. Swarthmore College, 442 F. Supp. 593, 619 (E.D. Pa. 1977)
(“It seems to the Court that each side has done a superior job in challenging the other’s regression
analysis, but only a mediocre job in supporting their own. In essence, they have destroyed each other
and the Court is, in effect, left with nothing.”).

101. See Fisher, supra note 73, at 279, for suggested procedures for building models that can be
defended in court.
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after a clever or crude search for something significant in the data. Finally, I
have pointed out that the typical hypothesis test or P-value looks at the value
of a parameter rather than at a model’s reasonableness.

This last point may seem obvious. Statistics—significant or otherwise—
derived from an inappropriate model give useless answers. As trite as this
observation may be, it bears on whether it is desirable to drag the jargon and
mechanics of full blown hypothesis testing into legal disputes. This mode
of discourse can obscure the fact that there are always other alternatives
besides the one the statistician identifies as H, in formulating the test.102

Courts are quite capable of appreciating the limited context of the
hypothesis test. In Mapes Casino, Inc. v. Maryland Casualty Co.,'9 for
example, the court recognized the importance of the “extrinsic” alter-
natives that the proponent of the statistical evidence failed to enumerate. In
this case, the plaintiff sought to quantify the amount of its loss due to
employee defalcation. The plaintiff casino showed that over an eighteen-
month period, the win percentage at its craps tables was 6.37 percent as
compared to an expected value (under the null hypothesis) of twenty
percent. Although no P-value was computed, the probability of a discre-
pancy of at least this size would be very small under the null hypothesis,
making it reasonable to reject that hypothesis. But what does this prove?
The court reasoned that the statistics were probative of the fact that
something was wrong at the craps tables, but it held that this demonstration
could be used only to corroborate other evidence as to the quantum of
damages. The court pointed to other extrinsic hypotheses—such Ru-
nyonesque activities as “skimming,” “scamming,” and “crossroading”—
that might have accounted for the losses. 104

Likewise, in Moultrie, it is not hard to see that rejection of the null
hypothesis (that each registered black has a thirty-eight percent chance of
appearing on a grand jury) does not necessarily imply that the jury
commissioners discriminated. Perhaps the commissioners drew names
randomly from the voting list but then properly excluded a higher propor-
tion of black voters than white voters because a higher proportion of black
voters were illiterate, felons, or otherwise unqualified to serve. Perhaps the
commissioners summoned blacks at the rate of thirty-eight percent, but
relatively more blacks than whites failed to respond to the summonses. 105

102. See, e.g., Meier & Zabell, supra note 28 (enucleating such hypotheses in a forgery case).
Outside the legal realm there are many intriguing examples of the tendency to think that an outrageously
small P-value is definitive proof of an alternative hypothesis, even though there are extrinsic alternative
hypotheses that are no less plausible than the alternative used in arriving at the P-value. See, e.g., C.
HANSEL, ESP: A SCIENTIFIC EVALUATION (1966).

103. 290 F. Supp. 186 (D. Nev. 1968).

104. Mapes Casino, 290 F. Supp. at 193.

105. Since these hypotheses are not part of the probability model, the hypothesis test cannot reject
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Identifying such extrinsic hypotheses is not a technical procedure. It is the
product of practical judgment, combined with an understanding of how the
jury selection process should work. In such cases, the legal community is
not likely to surrender to the siren song of a successful significance test.
For these reasons, I would not go so far as to say that the problems of
extrinsic alternatives and searching for significance are decisive arguments
against using P-values or explicit hypothesis tests. Rather, I present these
problems to reinforce the salutory tendency of the more perceptive courts
to recognize the variety of possible alternatives to a null hypothesis—not
just the “alternative hypothesis” pertaining to the parameter value. %

IV. IMPROVED HYPOTHESIS TESTING

The limitations on hypothesis testing!%? surveyed in Part III should make
it plain that when statistical evidence is relevant to the resolution of a
disputed factual question in court, the procedure is no panacea. In making
this point, I may have been preaching to the converted. It is one thing to say,
as some courts have, that hypothesis tests are an “objective” and conven-
tional procedure for statistical inference. It is another to believe that they
are all one needs to assess statistical arguments. It is not so clear that any
courts have embraced the latter view. Even the Fourth Circuit, while
continuing to insist that “a finding of legally significant variations based on
statistical evidence may not be made in the absence of a finding of

or accept them. Nonetheless, it may be that the appropriate legal rule should not place the burden of
disproving these possibilities on the petitioner. After all, a prima facie case can be rebutted. See, e.g.,
Kaye, Statistical Evidence of Discrimination, 77 J. AM. STATISTICAL Ass’N 773 (1982).

106. Those acquainted with the voluminous and sometimes vociferous literature on significance
testing in the sciences will recognize that there is nothing very original in this collection of defects or
limitations of hypothesis testing. Because forensic statistics is still in its infancy, however, there is some
value in reiterating these criticisms of hypothesis testing. The courts should not be condemned to repeat
the mistakes of other disciplines that rely on statistical argument and analysis.

107. Some writers distinguish between *‘hypothesis testing” and “significance testing.” See V.
BARNETT, supra note 77, at 129. They use “hypothesis testing” to denote procedures that involve the
explicit statement of two hypotheses and a critical region in which the test statistic leads to rejection of
the nulf hypothesis. This decision-oriented approach is associated with the work of J. Neyman and E.S.
Pearson. *Significance testing,” in contrast, may denote a procedure that assesses the evidence against
a hypothesis, without specifying a rule for reaching a decision about that hypothesis. It is what I have
been describing as a simple presentation of the P-value, and it seems closer to Fisher’s views on
statistical inference in science, see Fisher, Statistical Methods and Scientific Induction, supra note 53,
at 471-72 and more in keeping with the expert witness’ role in court. Cf. Marshall & Olkin, A General
Approach to Some Screening and Classification Problems, 30 J. ROYAL STATISTICAL SOC’Y SERIES B
407, 440 (1968) (statement of Professor Kerridge in Discussion on the Paper by Dr. Marshall and
Professor Olkin) (“It is not primarily the responsibility of a statistician to make decisions for other
people—not in general at any rate . . . . Itis for somebody else to say what decisions should be made
with . . . information. In other words, ideally, it is the statistician’s job to inform not to decide.”).
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“statistical significance,”108 has conceded that “[t]he adoption of a par-
ticular level or test of statistical significance, . . . is arbitrary.”10?

Nevertheless, I have done more than simply advance the proposition that
hypothesis tests are not all there is to making intelligent decisions on the
basis of statistical evidence. I have contended that, in the context of
litigation, the consumers of neatly packaged hypothesis tests are more
likely to be misled than enlightened. But this claim needs to be qualified. If
the price is right, expert testimony will be available to counteract the
sources of error that  have mentioned. Thus, the real question for the law of
evidence is whether the costs of educating the triers of fact are worth the
benefits that formal hypothesis testing can bring to the factfinding process.

Although I have suggested that this question should be answered in the
negative,!10 I treated hypothesis tests at an elementary level. While most
court presentations probably do not go beyond this level, if hypothesis
testing is to be given a fair trial, we should consider its full potential, and
not merely an early record that includes unsophisticated or thoughtless
applications of the technique. This section considers an addition to hypoth-
esis testing that many statisticians consider superior to the simplified
approach outlined in Part II. I conclude, however, that this addition is not
adequate to keep formal hypothesis testing viable for forensic use.

The improvement involves attending to the “power” of the test. Re-
member that the hypothesis test in Moultrie led us to accept the null
hypothesis when three out of eighteen grand jurors were black. This
outcome does not mean that the commissioners used the “null list.” It
merely reflects the fact that the test has little power to discriminate between
the null and the alternative hypothesis. The formal and quantitative method
of expressing this characteristic of the test is known as the “power func-
tion.” 111

108. EEOQOC v. Federal Reserve Bank, 698 F.2d 633, 648 (4th Cir. 1983).

109. Id. at 647 (quoting Smith & Abram, Quantitative Analysis and Proof of Employment
Discrimination, 1981U.1ILL. L. REv. 33, 43). This language contrasts with the same court’s description
of hypothesis testing only a few months earlier. See supra text accompanying note 20. After Federal
Reserve Bank, the rule in the Fourth Circuit seems to be that hypothesis testing is a prerequisite to
finding discrimination from stastistical evidence, but that the signficance level need not be set at .05 as
long as it is “acceptable” on the basis of as yet unstated criteria. On balance, the opinion suggests that
the court is moving toward the position that small P-values and substantial disparities are required for
there to be statistical proof of discrimination. But see Bazemore v. Friday, 751 F.2d 662, 673 (4th Cir.
1984) (misreading Hazelwood as establishing “the rule” that “more than two or three standard
deviations would be required to undercut the presumption that employment decisions were being made
without respect to race.”). The insistence of the D.C. Circuit in Segar that “significant” disparities are
essential, combined with the reluctance of that court to adopt explicitly a specific threshold for
determining “significance,” suggests that the rule in the D.C. Circuit is similar.

110. See supra Part III.

111. The “operating characteristic function,” which is mathematically identical to 1 minus the
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To see whether testimony on this point might be useful in court, let us
reconsider the analysis of the underrepresentation of blacks on the grand
jury that indicted Moultrie. As in Part II, we take as the null hypothesis Hy:
6 = .38. To formulate the alternative hypothesis, we no longer assume the
existence of a single “alternative” list. Following the approach of the
Fourth Circuit Court of Appeals (even though the model implicit in this
approach is implausible!12), we assume that the commissioners might have
used any one of a vast number of alternative lists. That is, we take the
alternative hypothesis to be that 8 is something other than .38, though we
cannot say how far the true value is from .38. In symbols, we write H;: 6 #
.38. Given that there were only eighteen grand jurors selected, that we are
considering this two-sided alternative hypothesis,!!3 and that we want a
significance level of .05, the only outcomes that would lead to rejection of
the null hypothesis are fewer than three, or more than eleven, black jurors.
Intermediate values will not count as “statistically significant” evidence
against the hypothesis of random selection from the proper list.

We now ask the following question: For all of the possible values of the
parameter 0 that represent the chance of selecting a black on each grand
juror draw, what is the probability that application of this test will cause us
to reject the null hypothesis? This probability, which varies as 6 assumes
different values, constitutes the power function of the hypothesis test. We

power function, also is used. See, e.g., J. MELSA & D. COHN, DEC:SION AND ESTIMATION THEORY 32-38
(1978): NATIONAL RESEARCH COUNCIL; COMMITTEE ON EVALUATION OF SOUND SPECTROGRAMS, ON THE
THEORY AND PRACTICE OF VOICE IDENTIFICATION 27-30 (1979). This curve represents the risk of failing
to recognize the alternative hypothesis as correct when in fact it is correct for each possible value of the
unknown paramter.

112, See supra note 87.

113.  We might have said that the alternative hypothesis is that the commissioners used a list in
which blacks were underrepresented to some unknown degree, i.e, that 8§ < .38. This seems more
reasonable than thinking that instead of drawing from the correct list, the commissioners drew from one
that contained too few whites. Yet the Moultrie court, like many others, unthinkingly used a two-sided
test. To the extent that the choice between a one-sided and a two-sided alternative hypothesis is often
debatable, the use of hypothesis testing may not be quite as objective as it first appears to be. This
difficulty arose in EEOC v. Federal Reserve Bank, 698 F.2d 633 (4th Cir. 1983). In this case, the court
of appeals seems to say that one-tailed tests are not appropriate, because some statisticians describe
them as “data mining.” /d. at 655. What the textbook cited for this proposition actually says is that
deciding to use a one-tailed test after running a two-tailed test is a form of “data snooping,” which is “a
perfectly reasonable thing to do” if certain precautions are observed. D. FREEDMAN, R. Pisani & R.
PURVES, STATISTICS 494 (1978). As these authors point out, it is only “the arbitrary [significance levels]
at 5% and 1% which make the distinction between two-tailed and one-tailed tests loom so large.” /d. at
496. If one looks at the P-value as indicating one aspect of the strength of the statistical evidence, rather
than as a number that must exceed some preordained value to warrant some action, “it doesn’t matter
very much whether an investigator makes a one-tailed or a two-tailed z-test, as long as he tells you
which it was.” Id. See also Goldstein, Two Types of Statistical Error in Employment Discrimination
Cases, 26 JURIMETRICS J. 32 (1985) (defending one-tailed testing as having greater power than two-
tailed testing).
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already know that if the null hypothesis, which asserts that the true value of
0 is .38, is correct, the probability of mistakenly rejecting Hy in favor of H;
isabout .05. This is what it means to insist on a significance level of .05. To
put it yet another way, if we somehow could apply this test over and over
with the model in the Moultrie case, we would reject the null hypothesis
improperly in no more than one out of every twenty such cases.!4 In short,
we know that the test is very good at accepting the null hypothesis when
that hypothesis is true. The power function takes us one step further. It
indicates how sensitive the test is to rejection of the null hypothesis when
that hypothesis is false.

Computing the values of the power function for the test used in Moultrie
is more tedious than difficult. The results are displayed in Figure 1. As one
would expect, the test has little chance of rejecting the null hypothesis when
the alternative list is only slightly different than the proper list. But what
should give us pause is that the test does not have a better than even chance
of correctly detecting the use of an alternative list—unless the list is so
grossly biased (8 < .15) that a black’s chance of appearing on a grand jury
is diluted by some sixty percent.115

A court that could recognize this power function and understand its
meaning would realize that the failure to find “significance” does not
“undercut” or “weaken” the alternative hypothesis.!16 It simply reflects
the inability of the test to recognize that the alternative hypothesis is correct
when in fact it is correct.11?

Perhaps presentations along these lines might be useful in some cases. !18

114.  Actually, the test is even more sensitive to a false rejection. Rejecting Hy when the number of
blacks is 0-2 or 12-18 amounts to adoption of a significance level of .03. If we were to expand the
critical region to include 3 blacks, however, we would be using a level of .06. Since there is nothing in
between, speaking of the .05 level in this case is misleading. Anything significant at the .05 level is also
significant at the .03 level. We are therefore demanding more than the .05 figure suggests.

115.  Sixty percent is the relative difference between the proportion of blacks on the voting list and
the proportion on the grand jury. As explained in Kaye, supra note 5, it is not the best measure of the
degree of underrepresentation, but it is preferable to other measures that the courts have used.

116. The Moultrie court is not guilty of this misinterpretation. For an example of such a character-
ization of data that are not quite statistically significant at an arbitrarily selected significance level, see
Hazelwood School Dist. v. United States, 433 U.S. 299, 311 & 311 n.17 (1977).

117.  Cf. supra note 80 and accompanying text.

118. Henkel & McKeown, Unlawful Discrimination and Statistical Proof: An Analysis, 22
JURIMETRICS J. 34 (1981), pursue such an analysis. For data from two discrimination cases, they
compute the risk of a miss in testing for significance at the .05 level given particular, hypothetical values
of the unknown parameter. In other words, they give, in numerical form, certain points on the operating
characteristic curve. They conclude that using a pre-established level of .05 unfairly advantages
defendants. See also Dawson, Are Statisticians Being Fair to Employment Discrimination Plaintiffs?,
21 JurRIMETRICS J. 1 (1980).

The matter may be more complex than this. A more general analysis of the properties of hypothesis
tests for simple hypotheses, on the basis of data sampled from a normal distribution (which is the
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Figure 1. Power Function

for Hypothesis Test in Moultrie
For example, pointing out that a test had a power function like that shown in
Figure 1 might help a plaintiff counter a defendant’s misleading claim that
its statistics show quantitatively that the evidence of discrimination is “not
significant.” But I fear that most of the time talk of “power” would sail
smoothly over the heads of the finders of fact. Moreover, such presentations
would address only a small portion of the concerns raised in Part III. It may
be that courts that permit testimony as to “significance” and “rejection” or
“acceptance” of “hypotheses” should also insist on seeing the power
functions. Even with this supplement, however, the assistance that the trier
of fact might receive from the presentation of hypothesis tests beyond a
simple statement of the P-value seems too slight to justify explicit use of the
tests in court.

approximation that Henkel and McKeown use), reveals that using a fixed significance level of .05 can
lead to rejection of Hy for some samples that actually provide strong evidence (as indicated by the
likelihood ratio for these hypotheses) that Hy is true. M. DEGROOT, supra note 2, at 380-81.
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Still, the statistical concept of power has other implications, and one
commentator has recommended a slightly different application of the
power function. Dawson argues that since the civil burden of proof is a
preponderance of the evidence, not a “scientific certainty,” the “appropri-
ate level of test . . . should be that which equalizes the competing risks
. . .[,] the level that balances confidence and power.” 119 His proposal, in
other words, is to move the significance level to the point where the risks of
falsely rejecting the null hypothesis and falsely accepting the null hypoth-
esis are equal, and then to apply the significance test. The power function
enters into the formulation of the test procedure, but the function need not
be exhibited or explained.

This effort to derive the requisite significance level from the burden of
persuasion cannot avoid the criticism that the choice of the significance
level is arbitrary and inconsistent with the values that inform the applicable
evidentiary standard. Although the preponderance of the evidence standard
reflects the principle that the cost of a mistaken verdict for plaintiff is
neither greater nor less than the cost of a mistaken verdict for defendant,!20
this standard is concerned with the probability, estimated in light of the
evidence in the case, that plaintiff’s version of the dispute is correct.!2!
Using H; to represent plaintiff’s version of the facts in dispute, and Hj to
represent defendant’s version, we can abbreviate this decisively important
probability as Pr(H,|Data). The preponderance of the evidence standard
dictates a decision for plaintiff whenever Pr(H,|Data) exceeds Pr(Hg|Data),
thereby minimizing the probability of a mistaken verdict.

In contrast, the proposal to equate the risk of the two types of errors
focuses on two quite different probabilities—Pr(D,|Hy), the probability of
making a wrong decision (accepting H;) given that the null hypothesis Hy is
true, and Pr(Dy|H,), the corresponding probability of making a wrong
decision (accepting Hy) given that the alternative hypothesis H, is true.
This procedure sets a threshold that has no necessary connection with
Pr(H, |[Data), and it does not keep the probability of an erroneous verdict to
aminimum. As aresult, setting the significance level according to the error
costs generally does not conform to the law’s evidentiary standard.!?2 The

119. Dawson, supra note 118, at 14.

120. See, e.g., Kaye, The Limits of the Preponderance of the Evidence Standard: Justifiably Naked
Statistical Evidence and Multiple Causation, 1982 AM. B. FOUuND. REs. J. 487. This decision-theoretic
interpretation of the civil burden of persuasion has proved controversial.

121. Someone who denies the validity or applicability of subjective probabilities to a prescriptive
model of the trial process will not accept the claim that the finder of fact can arrive at such a probability.
Cohen, The Role of Evidential Weight in Criminal Proof, 66 B.U.L. REv. (in press).

122. A more extensive analysis of the relationship between the burden of persuasion and the
*“equalized” significance level can be found in Kaye, Hypothesis Testing in the Courtroom, supranote 2.
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expert should not be “testing” the statistical evidence at the levels de-
manded in scientific research or at a level that he thinks the law should
require. He should be informing the judge or jury so that these persons can
make their own decisions, using the law’s standards for evaluating evi-
dence.

V. SOME ALTERNATIVES!?

A. The P-Value

Thus far, I have argued that there is so little to be gained by the trier of
fact from being told the result of an hypothesis test, and so much potential
for confusion and distraction, that explicit hypothesis testing should not
survive a well-developed Rule 403 objection. An expert who can perform
an hypothesis test can always do something better. The expert can state the
P-value: Properly explained, this number can be of sufficient assistance to
the trier of fact to warrant its admission.

Of course, the P-value alone does not establish proof by a preponderance
of the evidence, or proof beyond a reasonable doubt.!?* This result is
implicit in the distinction, noted in Part IV, between the probabilities to
which the preponderance standard applies and those to which a signifi-
cance test applies. A small P-value (a “significant” or a “highly signifi-
cant” result, in the terminology I have criticized) does not guarantee “legal
significance.” It does not always establish that the probability favoring the
alternative hypothesis, Pr(H,|Data), is large.!?> Inversely, a large P-
value—a “very insignificant” result—need not imply a small posterior
probability Pr(H,|[Data). The data that give rise to a P-value may be too
limited for the statistical analysis to be very probative, and may be even
more likely to arise under an alternative hypothesis than under the null
hypothesis. For instance, in the Moultrie example of Part II, the P-value

123. The procedures considered in this section are traditional antidotes to “classical™ hypothesis
testing. The “likelihood” methods mentioned in Kaye, supra notes 2, 16 & 105, also are preferable to
explicit hypothesis tests.

124. See Kaye, Statistical Significance and the Burden of Persuasion, supra note 31.

125. Part of an example constructed by the statistician L.J. Savage illustrates this possibility.
Savage imagines an inebriated party-goer who says that he can predict the outcome of a coin toss. A coin
is tossed ten times, and the party-goer is correct every time. Contrast this with a music expert who says
he can distinguish a page of Haydn score from one of Mozart. This individual makes a correct
assignment for ten pairs of pages. In each case the P-value is the same, (¥2)'° = Viozs <0.001, in a one-
tail test of significance. Yet, most people probably would accept the musicologist’s claim, but dismiss
“this drunk’s run of luck.” L. Savage, The Subjective Basis of Statistical Practice (Report, University of
Michigan 1961), as described in V. BARNETT, supra note 77, at 11-12.
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was .051. The analogous probability computed under the alternative hy-
pothesis, that the commissioners picked the grand jurors from the list that
was fifteen percent black, is .720. It would be far more probable to find so
few blacks on the grand jury under the “not significant™ alternative hypoth-
esis than under the null hypothesis.

This last example may appear to suggest that whenever possible, the
analyst should report an analog to the P-value, Pr(Extreme Data|H, ), along
with the P-value. Unfortunately, when the alternative hypothesis involves a
broad range of possible values for the parameter in question, this will not be
possible. Even here, however, the court can better put statistical proof in
proper perspective if it is informed: (a) that the P-value is computed
according to a specific probability model; and (b) that, without knowing
exactly what alternative model and parameters to use, no expert can tell the
court what the probability of finding such data is if, as plaintiff claims, the
null hypothesis is false. Conclusory testimony as to “statistical signifi-
cance” conveys too little in the way information and too much in the way of
innuendo.

B. Interval Estimates

Although a clear statement of the P-value is greatly preferable to a
blanket assertion of the presence or absence of “statistical significance,”
there is a procedure that promises to be still more helpful than the P-value
approach. Whenever possible, the court should require the expert to give an
interval estimate of the parameter in question. As indicated in Part III, the
logic of interval estimation is that if one were to repeatedly estimate a
parameter on the basis of the many data sets generated by the statistical
model, the various estimates would be distributed around the true value of
the parameter in a probabilistically well-defined way. One would expect the
estimates to fall within a given distance of the unknown, true value a certain
percentage of the time. For example, in Moultrie the estimated value for 0,
the proportion of blacks on the list, was 3/18 = .17. If more grand juries
were drawn randomly from the same list, and if the composition of each
such grand jury were used to estimate 0, other estimates would be obtained:
some would be higher, and others lower, than .17. For each estimate, if we
were to state that the true value for 0 lies within a certain range (computed
by the same formula for each estimate), and if we wanted to be correct in
about half of these interval estimates, then the estimated interval derived
from the one grand jury in which three jurors were black would be the
observed proportion .17 plus-or-minus .06. Here, the interval estimate is
that 0 is between .11 and .23, and the process that led to this estimate would
give correct results about half the time.
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If we wished to use a process that would give correct estimates more
frequently, then we would have to be less precise about the value of 6. We
would have to say that 8 lies within a broader interval about the observed
proportion .17. For example, a formula that would give correct estimates in
ninety percent of the cases to which it is applied produces an interval
estimate of .0l to .32.

One advantage of interval estimation with a variety of confidence coeffi-
cients is that it emphasizes that the trier of fact, not the statistician, should
decide how accurate the procedure that gives the estimates should be. If a
method that would be accurate in half the cases is desired, the statistician
states one range of possible values for the proportion of blacks on the list. If
a more accurate method is desired, the statistician must give a another
range of possible values.

Another advantage of interval estimation is that it gives a range of
plausible values for the parameter in question, rather than a single number.
If this range is very broad, as in Moultrie, then the trier of fact can deduce
that the statistical evidence is not very informative. This avoids interference
with the law’s burden of proof that results from assigning the null hypoth-
esis to one side, and forcing the opposition to disprove the null hypothesis
at some preordained significance level that bears no necessary relation to
the applicable burden of persuasion. Although the explanation and presen-
tation of interval estimates may be more complicated than a simple state-
ment of the P-value, these estimates convey enough additional information
that this price seems worth paying. Courts should move beyond explicit
hypothesis testing and P-values, and demand interval estimates whenever
possible. 126

VI. CONCLUSION

This article reflects a particular philosophy about the role of statistical
experts in litigation. The underlying premise is that the expert’s proper role
is not to decide what the statistical evidence proves or disproves. That task,
I have supposed, is for the judge or jury. At the same time, statistical
evidence cannot be used wisely if it is not understood. The expert can
perform an important task by assisting the trier of fact to assess the
importance and implications of statistical evidence.

This explanatory function can best be fulfilled by giving the court all the
information it needs to evaluate the statistical findings intelligently. Testify-
ing about the result of an hypothesis test does not achieve this ideal. The

126. In some instances, as when nonparametric methods are used, interval estimates cannot be
computed. For some cautions about the use of interval estimates, see supra note 78.
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difficulties with reporting that results are “significant” or “not significant”
should require no further reiteration. Statistically significant results may or
may not satisfy the applicable legal standard of proof, and trying to
construct a test with these standards in mind is not a satisfactory solution to
the problems of significance testing.

Presenting the P-value without characterizing the evidence by a signifi-
cance test is a step in the right directiori. Interval estimation, in turn, is an
improvement over P-values. With more pieces of the puzzle in hand, the
judge and jury stand a better chance of understanding the worth of statis-
tical evidence.

This article is a plea to leave the task of decision to the trier of fact, and
not to rely on superficially impressive methods whose seeming objectivity
does not withstand analysis. It is a call for using, where suitable, those sta-
tistical tools that will aid these decisionmakers in the process of inference.
A statistical expert can do no more. He or she should not be allowed to do
much less. ’
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